Lockheed Martin Scientific Engineering Response and Analytical Services 2890 Woodbridge Avenue Building 209 Edison, NJ 08837-3679 Telephone 732-321-4200 Facsimile 732-494-4021 DATE: February 2, 2011 TO: Philip Campagna, ERT Work Assignment Manager FROM: Antonio LoSurdo, SERAS QA/QC Chemist THRU: Deborah Killeen, SERAS QA/QC Officer SUBJECT: Verification of Delayed Coker Unit Release Data #### INTRODUCTION SERAS personnel were requested to validate the TPH and PAH data for the water samples analyzed by Louisiana State University (LSU) for the Delayed Coker Unit Release. Raw data for a total of 58 water samples along with the standards and quality control (QC) samples were requested along with a copy of the standard operating procedure (SOP) used to analyze these samples. LSU-RCAT SOP#001-08 titled "Standard Operating Procedure for Oil Spill Source Identification" was received and reviewed by SERAS personnel. During the review, it was noted that this method is used for general qualitative oil characterizations and quantitative analysis of a list of target compounds found in oil. This SOP is based on American Society for Testing and Materials (ASTM) D-5739-00 and EPA SW-846 Method 8270. Because this SOP does not routinely require a decafluorotriphenylphosphine (DFTPP) tune, it was determined that the PAH data could not be validated in accordance with the National Functional Guidelines since all PAH data would be rejected under these circumstances. The LSU SOP does not require a resolution check or a mass resolution check. Instead a decision was made to verify the data based on the SOP supplied by LSU. Verification confirms by examination of the raw data that the specified requirements of the SOP had been followed. #### VERIFICATION FINDINGS SERAS personnel reviewed the submitted data using the following data categories to verify the data: Holding Time, Instrument Performance Check, Method Blanks, Calibration (Initial and Continuing), Internal Standards, Laboratory Control Samples, Duplicate Analysis, Compound Identification and Reporting Limits. Holding Time – All samples were analyzed within holding time based on the documentation supplied. Chain of custody (COC) records were not available for the 48 samples extracted by Pace Analytical. The collection time recorded on Pace's extraction log records that appears to be generated by their Laboratory Information Management System (LIMS) was used to verify collection dates. Instrument Performance Check – Perfluorotributylamine (PFTBA) was used to auto-tune the Gas Chromatograph/Mass Spectrometer (GC/MS) in accordance with the LSU SOP. Environmental applications also require the use of DFTPP to verify the tune for PAHs (EPA Method 8270), which was not used by LSU. DFTPP is not required by ASTM D5739-00. Method Blanks – TPH concentrations were less than the method detection limits (MDLs) and the reporting limits (RLs). There were concentrations of PAHs present in the method blank under the RL but above the MDL. Initial Calibration – The percent relative standard deviation (%RSD) and the average relative response factors (RRFs) met the QC criteria stipulated in standard EPA methods. It was assumed that the data submitted in the spreadsheet from LSU is correct since it was not possible to verify the raw data directly from the instrument. This includes area responses and retention times. Continuing Calibration – The percent difference (%D) met the $\pm 20\%$ criteria in the LSU SOP with the exception of three compounds in one continuing calibration. As stated above under the initial calibration, it is assumed that that the data submitted in the spreadsheet from LSU is correct since it was not possible to verify the raw data directly from the instrument. This includes area responses and retention times. Internal Standards – Retention times could not be evaluated for any of the standards, samples or QC samples since this information is not captured into the spreadsheets used by LSU. The internal standard responses met the criteria stipulated in standard EPA methods. Laboratory Control Sample – A laboratory control sample (LCS) and a LCS duplicate (LCSD) for TPH were available for the 10 samples extracted by LSU. The TPH recoveries and the relative percent difference (%RPD) were acceptable. LCS/LCSD samples for PAHs were extracted for the three batches extracted by Pace Analytical. Compound Identification and Quantitation – The initial data received from LSU did not take into account that the sample injection volume is $2~\mu L$ instead of the $1~\mu L$ used for the standards. As a result, all results were corrected by a factor of 2. Some compounds initially reported as a "U" under the MDL on the corrected tables are now above the MDL but under the RL (Refer to Attachment 1). The MDLs and RQLs reported for RCAT No. 2010356-13 reflects a 10 time dilution for all of the compounds except nC-10 Decane. This cannot be confirmed and SERAS is under the assumption that these MDLs and RLs should be adjusted to reflect a straight run. ### CONCLUSIONS AND RECOMMENDATIONS TPH and PAH data were generated for 58 water samples by LSU in accordance with LSU-RCAT SOP#001-08. This method is an oil fingerprinting method for oil analytes. The TPH and PAH data are acceptable based on the requirements of the LSU SOP. If a crosswalk between the samples analyzed by LSU and the ERT/SERAS Laboratory can be made, the use of two independent methods may lend credence to the acceptability of the PAH data not analyzed with a DFTPP verification tune. Cc: Central Files, SERAS-116 Electronic File SERAS-116-DTM-020211 Phil Solinski, SERAS Task Leader Dennis Miller, SERAS Program Manager ### ATTACHMENT 1 Final Results – Corrected Technical Memorandum February 2011 ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Client: | Hovensa | | | |-----------------|-----------------|--|--| | Project Name: | St. Croix Spill | | | | roject name. | or crow spin | | | | |------------------------|--------------|------------|-------------|----------------| | Client ID | 152791 BLANK | 152792 LCS | 152793 LCSD | 3523810-001 PS | | RCAT ID | 2010355-01 | 2010355-02 | 2010355-03 | 2010355-04 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1000 | 1000 | 1000 | 1051 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | U | | nC-11 Undecane | Ū | Ü | Ü | U | | nC-12 Dodecane | U | Ü | 11 | U | | nC-13 Tridecane | Ū | 0.015 J | Öl | 1.017 J | | nC-14 Tetradecane | U | U | ا ل | U | | nC-15 Pentadecane | U | Ü | U | U | | nC-16 Hexadecane | U | 0.041 J | -
U | Ü | | nC-17 Heptadecane | U | U | U | U | | Pristane | U | U | Ü | Ü | | nC-18 Octadecane | U | U | U | U | | Phytane | U | U | U | U | | nC-19 Nonadecane | U | U | U | U | | nC-20 Eicosane | U | U | U | U | | nC-21 Heneicosane | U | U | U | 0.049 J | | nC-22 Docosane | U | U | U | U | | nC-23 Tricosane | U | U | U | 0.045 J | | nC-24 Tetracosane | U | U | U | 0.067 J | | nC-25 Pentacosane | U | U | U | 0.237 J | | nC-26 Hexacosane | U | U | U | 0.195 J | | nC-27 Heptacosane | U | U | U | 0.202 J | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | U | U | 0.201 J | | nC-30 Triacontane | U | U | U | 0.116 J | | nC-31 Hentriacontane | U | U | U | 0.128 J | | nC-32 Dotriacontane | U | U | U | U | | nC-33 Tritriacontane | U | U | U | U | | nC-34 Tetratriacontane | U | U | U | U | | nC-35 Pentatriacontane | U | U | U " | U | | Total Alkanes | 0.000 | 0.056 | 0.900 (), (| 1.24 | | Surrogate Recovery (%) | | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Client: | Hovensa | |-----------------|---------| | Orolont Names | CA C | | Project Name: | St. Croix Spill | | | | |--|-----------------|--------------|--------------|----------------| | Client ID | 152791 BLANK | 152792 LCS | 152793 LCSD | 3523810-001 PS | | RCAT ID | 2010355-01 | 2010355-02 | 2010355-03 | 2010355-04 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | | | | % Moisture | 0 | • | Mustang | Mustang | | % Lipid | | 0 | 0 | 0 | | ' | 0.000 | 0 | 0 | 0 | | Sample Size | 1000 | 1000 | 1000 | 1051 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Naphthalene | U | 2960 | 2960 | U | | C1-Naphthalenes | U | U | U | Ū | | C2-Naphthalenes | U | U | U | Ū | | C3-Naphthalenes | U | U | U | U | | C4-Naphthalenes | U | U | U | Ū | | Fluorene | U | 4640 | 4520 | U | | C1-Fluorenes | U | U | U | U | | C2-Fluorenes | U | U | U | U | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene | U | U | U | U | | C1-Dibenzothiophenes C2-Dibenzothiophenes | U | U | U | U | | C3- Dibenzothiophenes | U
U | U | U | U | | Phenanthrene | U | U | U | U | | C1-Phenanthrenes | Ü | 4270 | 4240 | U | | C2-Phenanthrenes | Ü | U
U | U | U | | C3-Phenanthrenes | Ü | U | U | U | | C4-Phenanthrenes | U | U | U
U | U | | Anthracene | Ŭ | 4790 | 4540 | U | | Fluoranthene | Ü | 3850 | 3770 | Ü | | Pyrene | Ü | 3820 | 3770 | Ü | | C1- Pyrenes | Ü | U | U. | U | | C2- Pyrenes | Ü | Ü | Ü | Ü | | C3- Pyrenes | U | Ű | Û | ŭ | | C4- Pyrenes | U | U | Ū | Ü | | Naphthobenzothiophene | U | U | Ū | Ü | | C-1 Naphthobenzothiophenes | U | U | U | Ū | | C-2 Naphthobenzothiophenes | U | U | U | U | | C-3 Naphthobenzothiophenes | U | U | U | U | | Benzo (a) Anthracene | U | 3760 | 3810 | U | | Chrysene | U | 4430 | 4420 | U | | C1- Chrysenes | U | U | U | U | | C2- Chrysenes | U | U | U | U | | C3- Chrysenes | Ü | U | U | U | | C4- Chrysenes | U | U | U | U | | Benzo (b) Fluoranthene
Benzo (k) Fluoranthene |
U | 4230 | 4800 | U | | Benzo (e) Pyrene | ປ
ປ | 4340 | 4760 | U | | Benzo (a) Pyrene | U | U
3500 | U | U | | Perylene | Ü | 3590 | 3620 | U | | Indeno (1,2,3 - cd) Pyrene | Ü | U
1990 | 1000 | U | | Dibenzo (a,h) anthracene | Ü | 2380 | 1980 | U | | Benzo (g,h,i) perylene | Ü | 2300
1740 | 2320
1730 | U | | Total Aromatics | 0.000 | 50800 | 51300 | 0.000 | | | | | 000 | 0.000 | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Client: St. Croix Spill | Project Name: | St. Croix Spill | | | | | | | | |-----------------------|-----------------|---------|-------|---------|-------|---------|--------|----------| | Client ID | 15279 | 1 BLANK | 1527 | '92 LCS | 1527 | 93 LCSD | 352381 | 0-001 PS | | RCAT ID | 2010 | 355-01 | 2010 | 355-02 | 2010 | 355-03 | 2010 | 355-04 | | Sample Matrix | W | ater | w | ater | w | ater | w | ater | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | Mu | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 10 | 000 | 10 | 000 | 10 | 000 | 10 | 051 | | Sample Unit-Basis | 1 | ml | ı | ml | | mi | , | nl | | Units | u | g/L | u | g/L | u | g/L | u | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.017 | 1.000 | 0.017 | 1.000 | 0.017 | 1.000 | 0.016 | 0.951 | | nC-11 Undecane | 0.012 | 0.952 | 0.013 | 1.000 | 0.013 | 1.000 | 0.012 | 0.951 | | C-12 Dodecane | 0.014 | 0.952 | 0.015 | 1.000 | 0.015 | 1.000 | 0.014 | 0.951 | | C-13 Tridecane | 0.011 | 0.952 | 0.011 | 1.000 | 0.011 | 1.000 | 0.011 | 0.951 | | C-14 Tetradecane | 0.026 | 0.952 | 0.027 | 1.000 | 0.027 | 1.000 | 0.026 | 0.951 | | C-15 Pentadecane | 0.023 | 0.952 | 0.024 | 1.000 | 0.024 | 1.000 | 0.023 | 0.951 | | C-16 Hexadecane | 0.021 | 0.952 | 0.022 | 1.000 | 0.022 | 1.000 | 0.021 | 0.951 | | C-17 Heptadecane | 0.046 | 0.952 | 0.048 | 1.000 | 0.048 | 1.000 | 0.046 | 0.951 | | ristane | 0.044 | 0.952 | 0.046 | 1.000 | 0.046 | 1.000 | 0.044 | 0.951 | | C-18 Octadecane | 0.067 | 0.952 | 0.070 | 1.000 | 0.070 | 1,000 | 0.067 | 0.951 | | Phytane | 0.069 | 0.952 | 0.073 | 1.000 | 0.073 | 1.000 | 0.069 | 0.951 | | C-19 Nonadecane | 0.038 | 0.952 | 0.039 | 1.000 | 0.039 | 1.000 | 0.037 | 0.951 | | C-20 Eicosane | 0.039 | 0.952 | 0.041 | 1.000 | 0.041 | 1.000 | 0.039 | 0.951 | | C-21 Heneicosane | 0.033 | 0.952 | 0.034 | 1.000 | 0.034 | 1.000 | 0.033 | 0.951 | | C-22 Docosane | 0.066 | 0.952 | 0.070 | 1.000 | 0.070 | 1.000 | 0.066 | 0.951 | | C-23 Tricosane | 0.037 | 0.952 | 0.039 | 1.000 | 0.039 | 1.000 | 0.037 | 0.951 | | C-24 Tetracosane | 0.059 | 0.952 | 0.062 | 1.000 | 0.062 | 1.000 | 0.059 | 0.951 | | C-25 Pentacosane | 0.186 | 0.952 | 0.195 | 1.000 | 0.195 | 1.000 | 0.185 | 0.951 | | C-26 Hexacosane | 0.157 | 0.952 | 0.165 | 1.000 | 0.165 | 1.000 | 0.157 | 0.951 | | C-27 Heptacosane | 0.124 | 0.952 | 0.130 | 1.000 | 0.130 | 1.000 | 0.124 | 0.951 | | C-28 Octacosane | 0.199 | 0.952 | 0.208 | 1.000 | 0.208 | 1.000 | 0.198 | 0.951 | | C-29 Nonacosane | 0.150 | 0.952 | 0.157 | 1.000 | 0.157 | 1.000 | 0.149 | 0.951 | | C-30 Triacontane | 0.083 | 0.952 | 0.087 | 1.000 | 0.087 | 1.000 | 0.083 | 0.951 | | C-31 Hentriacontane | 0.084 | 0.952 | 0.088 | 1.000 | 0.088 | 1.000 | 0.084 | 0.951 | | C-32 Dotriacontane | 0.048 | 0.952 | 0.051 | 1.000 | 0.051 | 1.000 | 0.048 | 0.951 | | C-33 Tritriacontane | 0.070 | 0.952 | 0.074 | 1.000 | 0.074 | 1.000 | 0.070 | 0.951 | | C-34 Tetratriacontane | 0.069 | 0.952 | 0.073 | 1.000 | 0.073 | 1.000 | 0.069 | 0.951 | | C-35 Pentatriacontane | 0.034 | 0.952 | 0.036 | 1.000 | 0.036 | 1.000 | 0.034 | 0.951 | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Project Name: | St. Croix Spill | | | | | | | | |------------------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Client ID | 15279 | 1 BLANK | 1527 | 92 LCS | 15279 | 93 LCSD | 352381 | 0-001 PS | | RCAT ID | 2010 | 355-01 | 2010 | 355-02 | 2010 | 355-03 | 2010 | 355-04 | | Sample Matrix | w | ater | w | ater | w | ater | W. | ater | | Analytical Instrument | Mu | stang | Mu | stang | | stang | | stang | | % Moisture | | 0 | | 0 | ivid | = | | _ | | | | | | | | 0 | | 0 | | % Lipíd | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 000 | 10 | 000 | 1 | 000 | 10 | 051 | | Sample Unit-Basis | į | ml | ı | nl | i | mi | r | nl | | Units | | g/L | | g/L | | g/L | | g/L | | Nonbibalono | MDL | RQL
5.000 | MDL | RQL | MDL | RQL | MDL | RQL | | Naphthalene | 0.225
0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C1-Naphthalenes
C2-Naphthalenes | 0.225 | 5.000
5.000 | 0.225
0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C3-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225
0.225 | 5.000 | 0.225 | 5.000 | | C4-Naphthalenes | 0.225 | 5.000 | | 5.000 | | 5.000 | 0.225 | 5.000 | | Fluorene | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C1-Fluorenes | 0.514 | 5.000 | 0.514
0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | C2-Fluorenes | 0.514 | 5.000 | 0.514 | 5.000
5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | C3- Fluorenes | 0.514 | 5.000 | 0.514 | 5.000 | 0.514
0.514 | 5.000
5.000 | 0.514 | 5.000 | | Dibenzothiophene | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.514 | 5.000 | | C1-Dibenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C2-Dibenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659
0.659 | 5.000 | | C3- Dibenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | Phenanthrene | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000
5.000 | | C1-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C2-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C3-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C4-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | Anthracene | 0.398 | 5.000 | 0.398 | 5.000 | 0.398 | 5.000 | 0.398 | 5.000 | | Fluoranthene | 0.683 | 5.000 | 0.683 | 5.000 | 0.683 | 5.000 | 0.683 | 5.000 | | Pyrene | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C1- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C2- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C3- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C4- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | Naphthobenzothiophene | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-1 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-2 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-3 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | Benzo (a) Anthracene | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | Chrysene | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C1- Chrysenes | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C2- Chrysenes | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | 3- Chrysenes | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C4- Chrysenes | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | lenzo (b) Fluoranthene | 0.751 | 5.000 | 0.751 | 5.000 | 0.751 | 5.000 | 0.751 | 5.000 | | lenzo (k) Fluoranthene | 0.706 | 5.000 | 0.706 | 5.000 | 0.706 | 5.000 | 0.706 | 5.000 | | Benzo (e) Pyrene | 1.009 | 5.000 | 1.009 | 5.000 | 1.009 | 5.000 | 1.009 | 5.000 | | Benzo (a) Pyrene | 0.843 | 5.000 | 0.843 | 5.000 | 0.843 | 5.000 | 0.843 | 5.000 | | Perylene | 0.268 | 5.000 | 0.268 | 5.000 | 0.268 | 5.000 | 0.268 | 5.000 | | ndeno (1,2,3 - cd) Pyrene | 1.960 | 5.000 | 1.960 | 5.000 | 1.960 | 5.000 | 1.960 | 5.000 | | Dibenzo (a,h) anthracene | 1.711 | 5.000 | 1.711 | 5.000 | 1.711 | 5.000 | 1.711 | 5.000 | | Benzo (g,h,i) perylene | 2,206 | 5.000 | 2.206 | 5.000 | 2.206 | 5.000 | 2.206 | 5.000 | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 3523811-001 PS | 3523812-001 PS | 3523813-001 PS | 3523814-001 PS | |------------------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010355-05 | 2010355-06 | 2010355-07 | 2010355-08 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1050 | 1048 | 1028 | 1044 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | U | | nC-11 Undecane | U | Ü | Ü | U | | nC-12 Dodecane | U | Ü | Ü | Ü | | nC-13 Tridecane | U | Ü | U | Ü | | nC-14 Tetradecane | U | U | Ü | U | | nC-15 Pentadecane | U | U | Ú | U | | nC-16 Hexadecane | U | U | Ü | U | | nC-17 Heptadecane | U | 0.053 J | Ü | U | | Pristane | U | 0.087 J | Ü | U | | nC-18 Octadecane | U | U | Ü | U | | Phytane | U | U | Ū | Ü | | nC-19 Nonadecane | U | U | Ü | Ü | | nC-20 Eicosane | U | U | Ü | Ü | | nC-21 Heneicosane | U | 0.037 J | Ū | U | | nC-22 Docosane | U | U | U | Ü | | nC-23 Tricosane | 0.059 J | 0.057 J | 0.061 J | 0.042 J | | nC-24 Tetracosane | 0.082 J | 0.072 J | 0.097 J | U | | nC-25 Pentacosane | U | U | U | Ü | | nC-26 Hexacosane | U | U | U | Ü | | nC-27 Heptacosane | U | 0.142 J | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | 0.263 J | U | U | | nC-30 Triacontane | U | U | U | U | | nC-31
Hentriacontane | U | U | Ü | U | | nC-32 Dotriacontane | U | U | Ü | U | | nC-33 Tritriacontane | U | U | Ü | Ü | | nC-34 Tetratriacontane | U | U | Ü | U | | nC-35 Pentatriacontane | U | 0.034 J | U | Ŋ | | Total Alkanes | 0.140 | 0.745 | 0.158 | 0.042 | | Surrogate Recovery (%) | | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 3523811-001 PS | 3523812-001 PS | 3523813-001 PS | 3523814-001 PS | |----------------------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010355-05 | 2010355-06 | 2010355-07 | 2010355-08 | | Sample Matrix | Water | Water | Water | | | Analytical Instrument | Mustang | | | Water | | % Moisture | | Mustang | Mustang | Mustang | | | 0 | 0 | 0 | 0 | | % Lipid | 0 | 0 | 0 | 0 | | Sample Size | 1050 | 1048 | 1028 | 1044 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Al- | | | | | | Naphthalene | U | U | U | U | | C1-Naphthalenes | U | U | U | U | | C2-Naphthalenes | U | U | U | U | | C3-Naphthalenes | U | U | 0.248 J | U | | C4-Naphthalenes | U | U | U | U | | Fluorene | U | U | U | U | | C1-Fluorenes | U | U | U | U | | C2-Fluorenes | U | U | U | U | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene | U | U | U | U | | C1-Dibenzothiophenes | U | U | U | U | | C2-Dibenzothiophenes | U | U | U | U | | C3- Dibenzothiophenes | U | U | U | U | | Phenanthrene | U | U | U | U | | C1-Phenanthrenes | U | U | U | Ū | | C2-Phenanthrenes | U | U | U | Ū | | C3-Phenanthrenes | U | U | U | Ū | | C4-Phenanthrenes | U | U | U | Ū | | Anthracene | U | U | U | Ū | | Fluoranthene | U | U | U | Ū | | Pyrene | U | U | U | Ú | | C1- Pyrenes | U | U | U | Ū | | C2- Pyrenes | U | U | U | Ū | | C3- Pyrenes | U | U | U | Ü | | C4- Pyrenes | U | U | U | Ū | | Naphthobenzothiophene | U | U | U | Ū | | C-1 Naphthobenzothiophenes | U | U | U | Ū | | C-2 Naphthobenzothiophenes | U | U | U | Ü | | C-3 Naphthobenzothiophenes | U | U | U | U | | Benzo (a) Anthracene | U | U | U | U | | Chrysene | U | U | U | U | | C1- Chrysenes | U | U | U | U | | C2- Chrysenes | U | U | U | U | | C3- Chrysenes | U | U | U | U | | C4- Chrysenes | U | U | U | U | | Benzo (b) Fluoranthene | U | U | U | Ū | | Benzo (k) Fluoranthene | U | U | U | Ū | | Benzo (e) Pyrene | U | U | U | Ū | | Benzo (a) Pyrene | U | U | U | Ū | | Perylene | U | U | U | Ū | | Indeno (1,2,3 - cd) Pyrene | U | U | U | Ū | | Dibenzo (a,h) anthracene | U | U | U | Ū | | Benzo (g,h,i) perylene | U | Ų | U | Ū | | Total Aromatics | 0.000 | 0.000 | 0.248 | 0.000 | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Project Name: Hovensa St. Croix Spill | Project Name: | St. Croix Spill | | | | | | | | |------------------------|-----------------|----------|--------|-----------|--------|----------|--------|----------| | Client ID | 352381 | 1-001 PS | 352381 | 12-001 PS | 352381 | 3-001 PS | 352381 | 4-001 PS | | RCAT ID | 2010 | 355-05 | 2010 | 355-06 | 2010 | 355-07 | 2010 | 355-08 | | Sample Matrix | W | ater | W | ater | W | ater | W | ater | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | Mus | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 10 | 050 | 10 | 048 | 10 | 028 | 10 |)44 | | Sample Unit-Basis | r | nl | ı | ml | r | nl | г | nl | | Units | սլ | g/L | u | g/L | uį | g/L | uį | g∕L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.952 | 0.016 | 0.954 | 0.017 | 0.973 | 0.016 | 0.958 | | nC-11 Undecane | 0.012 | 0.952 | 0.012 | 0.954 | 0.012 | 0.973 | 0.012 | 0.958 | | nC-12 Dodecane | 0.014 | 0.952 | 0.014 | 0.954 | 0.014 | 0.973 | 0.014 | 0.958 | | nC-13 Tridecane | 0.011 | 0.952 | 0.011 | 0.954 | 0.011 | 0.973 | 0.011 | 0.958 | | nC-14 Tetradecane | 0.026 | 0.952 | 0.026 | 0.954 | 0.026 | 0.973 | 0.026 | 0.958 | | nC-15 Pentadecane | 0.023 | 0.952 | 0.023 | 0.954 | 0.023 | 0.973 | 0.023 | 0.958 | | nC-16 Hexadecane | 0.021 | 0.952 | 0.021 | 0.954 | 0.022 | 0.973 | 0.021 | 0.958 | | nC-17 Heptadecane | 0.046 | 0.952 | 0.046 | 0.954 | 0.047 | 0.973 | 0.046 | 0.958 | | Pristane | 0.044 | 0.952 | 0.044 | 0.954 | 0.045 | 0.973 | 0.044 | 0.958 | | nC-18 Octadecane | 0.067 | 0.952 | 0.067 | 0.954 | 0.069 | 0.973 | 0.067 | 0.958 | | Phytane | 0.069 | 0.952 | 0.069 | 0.954 | 0.071 | 0.973 | 0.070 | 0.958 | | nC-19 Nonadecane | 0.038 | 0.952 | 0.038 | 0.954 | 0.038 | 0.973 | 0.038 | 0.958 | | nC-20 Eicosane | 0.039 | 0.952 | 0.040 | 0.954 | 0.040 | 0.973 | 0.040 | 0.958 | | nC-21 Heneicosane | 0.033 | 0.952 | 0.033 | 0.954 | 0.033 | 0.973 | 0.033 | 0.958 | | nC-22 Docosane | 0.066 | 0.952 | 0.066 | 0.954 | 0.068 | 0.973 | 0.067 | 0.958 | | nC-23 Tricosane | 0.037 | 0.952 | 0.037 | 0.954 | 0.038 | 0.973 | 0.037 | 0.958 | | nC-24 Tetracosane | 0.059 | 0.952 | 0.059 | 0.954 | 0.060 | 0.973 | 0.059 | 0.958 | | nC-25 Pentacosane | 0.186 | 0.952 | 0.186 | 0.954 | 0.189 | 0.973 | 0.187 | 0.958 | | nC-26 Hexacosane | 0.157 | 0.952 | 0.157 | 0.954 | 0.160 | 0.973 | 0.158 | 0.958 | | nC-27 Heptacosane | 0.124 | 0.952 | 0.124 | 0.954 | 0.127 | 0.973 | 0.125 | 0.958 | | nC-28 Octacosane | 0.199 | 0.952 | 0.199 | 0.954 | 0.203 | 0.973 | 0.200 | 0.958 | | nC-29 Nonacosane | 0.150 | 0.952 | 0.150 | 0.954 | 0.153 | 0.973 | 0.150 | 0.958 | | nC-30 Triacontane | 0.083 | 0.952 | 0.083 | 0.954 | 0.084 | 0.973 | 0.083 | 0.958 | | nC-31 Hentriacontane | 0.084 | 0.952 | 0.084 | 0.954 | 0.086 | 0.973 | 0.085 | 0.958 | | nC-32 Dotriacontane | 0.048 | 0.952 | 0.048 | 0.954 | 0.049 | 0.973 | 0.048 | 0.958 | | nC-33 Tritriacontane | 0.070 | 0.952 | 0.071 | 0.954 | 0.072 | 0.973 | 0.071 | 0.958 | | nC-34 Tetratriacontane | 0.069 | 0.952 | 0.069 | 0.954 | 0.071 | 0.973 | 0.069 | 0.958 | | nC-35 Pentatriacontane | 0.034 | 0.952 | 0.034 | 0.954 | 0.035 | 0.973 | 0.034 | 0.958 | | | | | | | | | | | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | , | St. Croix Spin | | | | | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Client ID | 35238 | 11-001 PS | 35238 | 12-001 PS | 35238 | 13-001 PS | 352383 | 14-001 PS | | RCAT ID | 2010 | 355-05 | 2010 | 0355-06 | 2011 | 0355-07 | 2010 | 355-08 | | Sample Matrix | W | /ater | | /ater | | /ater | | | | Analytical Instrument | | istang | | | | | | ater | | % Moisture | IVIC | - | IVIL | ustang | Mt | ıstang | | stang | | | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 050 | 1 | .048 | 1 | .028 | 1 | 044 | | Sample Unit-Basis | | ml | | ml | | ml | | ml | | Units | r | ıg/L | r | ng/L | | ng/L | | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | Naphthalene | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C1-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C2-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C3-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C4-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | Fluorene | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | C1-Fluorenes | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | C2-Fluorenes | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | C3- Fluorenes | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | Dibenzothiophene | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C1-Dibenzothiophenes C2-Dibenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C3- Dibenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | Phenanthrene | 0.659
0.383 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C1-Phenanthrenes | 0.383 | 5.000
5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C2-Phenanthrenes | 0.383 | 5.000 | 0.383
0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C3-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C4-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000
5.000 | 0.383
0.383 | 5.000 | 0.383 | 5.000 | | Anthracene | 0.398 | 5.000 | 0.398 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | Fluoranthene | 0.683 | 5.000 | 0.683 | 5.000 | 0.596 | 5.000
5.000 | 0.398 | 5.000 | | Pyrene | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.683
0.809 | 5.000 | | C1- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C2- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000
5.000 | | C3- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C4- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | Naphthobenzothiophene | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-1 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-2 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-3 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | Benzo (a) Anthracene | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | Chrysene | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C1- Chrysenes | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C2- Chrysenes | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C3- Chrysenes
C4- Chrysenes | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | Benzo (b) Fluoranthene |
1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | Benzo (k) Fluoranthene | 0.751
0.706 | 5.000 | 0.751 | 5.000 | 0.751 | 5.000 | 0.751 | 5.000 | | Benzo (e) Pyrene | 1.009 | 5.000 | 0.706 | 5.000 | 0.706 | 5.000 | 0.706 | 5.000 | | Benzo (a) Pyrene | 0.843 | 5.000
5.000 | 1.009 | 5.000 | 1.009 | 5.000 | 1.009 | 5.000 | | Perylene | 0.268 | 5.000 | 0.843
0.268 | 5.000
5.000 | 0.843 | 5.000 | 0.843 | 5.000 | | Indeno (1,2,3 - cd) Pyrene | 1.960 | 5.000 | 1,960 | 5.000 | 0.268 | 5.000 | 0.268 | 5.000 | | Dibenzo (a,h) anthracene | 1.711 | 5.000 | 1.711 | 5.000 | 1.960
1.711 | 5.000 | 1.960 | 5.000 | | Benzo (g,h,i) perylene | 2.206 | 5.000 | 2.206 | 5.000 | 2.206 | 5.000
5.000 | 1.711 | 5.000 | | | | | 2.200 | 0.000 | 2.200 | 3.000 | 2.206 | 5.000 | | | | | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 3523815-001 PS | 3523816-001 PS | 3523817-001 PS | 3523818-001 PS | |------------------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010355-09 | 2010355-10 | 2010355-11 | 2010355-12 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | • | | Sample Size | 1052 | 1048 | 991 | 991 | | Sample Unit-Basis | ml | mí | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | | | | nC-11 Undecane | U | U | U | U | | nC-12 Dodecane | Ü | U | U | U | | nC-13 Tridecane | Ü | U | U | U | | nC-14 Tetradecane | Ü | U | U | U | | nC-15 Pentadecane | Ü | U | U | U | | nC-16 Hexadecane | U | 0.032 J | U | U | | nC-17 Heptadecane | U | U.032 3 | U | U | | Pristane | Ü | U | U | U | | nC-18 Octadecane | Ü | U | U | U | | Phytane | Ü | U | V | U | | nC-19 Nonadecane | Ü | Ü | U | U | | nC-20 Eicosane | Ü | U | U | U | | nC-21 Heneicosane | Ü | U | U | U | | nC-22 Docosane | Ü | Ŭ | U | U | | nC-23 Tricosane | Ü | 0.039 J | U | U | | nC-24 Tetracosane | U | U.333 | U | U | | nC-25 Pentacosane | Ü | Ü | U | U | | nC-26 Hexacosane | Ú | U | U | U | | nC-27 Heptacosane | U | U | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | Ū | U | U | | nC-30 Triacontane | U | U | Ü | U | | nC-31 Hentriacontane | U | U | Ŭ | U | | nC-32 Dotriacontane | U | Ü | Ŭ | U | | nC-33 Tritriacontane | U | U | U | U | | nC-34 Tetratriacontane | U | Ü | Ü | U | | nC-35 Pentatriacontane | U | Ü | Ü | Ü | | Total Alkanes | 0.000 | 0.071 | 0.000 | 0.000 | | Surrogate Recovery (%) | | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | o | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 3523815-001 PS | 3523816-001 PS | 3523817-001 PS | 3523818-001 PS | |----------------------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010355-09 | 2010355-10 | 2010355-11 | 2010355-12 | | Sample Matrix | Water | Water | Water | | | Analytical Instrument | Mustang | | | Water | | % Moisture | • | Mustang | Mustang | Mustang | | | 0 | 0 | 0 | 0 | | % Lipid | 0.000 | 0 | 0 | 0 | | Sample Size | 1052 | 1048 | 991 | 991 | | Sample Unit-Basis | ml | ml | mi | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Naphthalene | U | U | U | U | | C1-Naphthalenes | Ü | Ü | Ü | U | | C2-Naphthalenes | Ū | Ü | Ŭ | U | | C3-Naphthalenes | U | Ũ | Ü | Ü | | C4-Naphthalenes | U | Ũ | ŭ | Ü | | Fluorene | U | ũ | Ŭ | Ü | | C1-Fluorenes | U | Ū | Ü | U | | C2-Fluorenes | Ū | Ŭ | Ü | U | | C3- Fluorenes | Ú | Ŭ | Ü | U | | Dibenzothiophene | Ū | ŭ | Ü | Ü | | C1-Dibenzothiophenes | U | Ü | Ŭ | U | | C2-Dibenzothiophenes | Ū | ŭ | Ü | U | | C3- Dibenzothiophenes | Ū | Ü | Ü | U | | Phenanthrene | Ū | ŭ | Ü | U | | C1-Phenanthrenes | Ü | ŭ | Ü | U | | C2-Phenanthrenes | Ü | ŭ | Ü | | | C3-Phenanthrenes | Ü | Ŭ | Ü | U | | C4-Phenanthrenes | Ü | Ŭ | Ŭ | U | | Anthracene | Ü | Ŭ | Ü | U | | Fluoranthene | Ü | Ŭ | Ŭ | U | | Pyrene | Ü | ŭ | ŭ | | | C1- Pyrenes | Ü | Ü | ŭ | U | | C2- Pyrenes | Ü | ŭ | Ŭ | U | | C3- Pyrenes | Ü | ŭ | Ü | U | | C4- Pyrenes | ŭ | Ü | Ü | U | | Naphthobenzothiophene | Ū | Ü | ŭ | U | | C-1 Naphthobenzothiophenes | Ū | Ü | ŭ | U | | C-2 Naphthobenzothiophenes | Ū | Ü | ŭ | U | | C-3 Naphthobenzothiophenes | Ü | Ü | Ü | U | | Benzo (a) Anthracene | Ũ | Ü | U | U | | Chrysene | Ü | Ü | U | - | | C1- Chrysenes | Ü | Ü | Ú | U | | C2- Chrysenes | Ü | Ü | U | U | | C3- Chrysenes | Ű | Ü | Ü | U | | C4- Chrysenes | Ü | ŭ | Ü | U | | Benzo (b) Fluoranthene | Ü | Ü | Ü | Ų | | Benzo (k) Fluoranthene | Ü | Ŭ | Ü | | | Benzo (e) Pyrene | Ü | Ü | U | U | | Benzo (a) Pyrene | Ü | ŭ | U | U | | Perylene | Ü | Ü | U | U | | Indeno (1,2,3 - cd) Pyrene | ŭ | U | U | U | | Dibenzo (a,h) anthracene | Ü | U | U | U | | Benzo (g,h,i) perylene | Ü | ŭ | U | U | | Total Aromatics | 0.000 | 0.000 | 0.000 | 0.000 | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | roject Name. | St. Croix Spili | | | | | | | | |-----------------------|-----------------|-----------|--------|-----------|--------|-----------|--------|-----------| | Client ID | 35238 | 15-001 PS | 35238: | 16-001 PS | 35238: | 17-001 PS | 352381 | 18-001 PS | | RCAT ID | 2010 | 355-09 | 2010 | 355-10 | 2010 | 355-11 | 2010 | 355-12 | | Sample Matrix | w | ater | w | ater | w | ater | | ater | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 052 | 1 | 048 | 9 | 91 | 9 | 91 | | Sample Unit-Basis | 1 | ml | | ml | ı | ml | r | ml | | Units | U | g/L | u | g/L | u | g/L | | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.951 | 0.016 | 0.954 | 0.017 | 1.009 | 0.017 | 1.009 | | nC-11 Undecane | 0.012 | 0.963 | 0.012 | 0.954 | 0.013 | 1.009 | 0.013 | 1.009 | | nC-12 Dodecane | 0.014 | 0.963 | 0.014 | 0.954 | 0.015 | 1.009 | 0.015 | 1.009 | | nC-13 Tridecane | 0.011 | 0.963 | 0.011 | 0.954 | 0.011 | 1.009 | 0.011 | 1.009 | | nC-14 Tetradecane | 0.026 | 0.963 | 0.026 | 0.954 | 0.027 | 1.009 | 0.027 | 1.009 | | nC-15 Pentadecane | 0.023 | 0.963 | 0.023 | 0.954 | 0.024 | 1.009 | 0.024 | 1.009 | | nC-16 Hexadecane | 0.022 | 0.963 | 0.021 | 0.954 | 0.023 | 1.009 | 0.023 | 1.009 | | nC-17 Heptadecane | 0.046 | 0.963 | 0.046 | 0.954 | 0.048 | 1.009 | 0.048 | 1.009 | | Pristane | 0.045 | 0.963 | 0.044 | 0.954 | 0.047 | 1.009 | 0.047 | 1.009 | | nC-18 Octadecane | 0.068 | 0.963 | 0.067 | 0.954 | 0.071 | 1.009 | 0.071 | 1.009 | | Phytane | 0.070 | 0.963 | 0.069 | 0.954 | 0.073 | 1.009 | 0.073 | 1.009 | | nC-19 Nonadecane | 0.038 | 0.963 | 0.038 | 0.954 | 0.040 | 1.009 | 0.040 | 1.009 | | nC-20 Eicosane | 0.040 | 0.963 | 0.040 | 0.954 | 0.042 | 1.009 | 0.042 | 1.009 | | nC-21 Heneicosane | 0.033 | 0.963 | 0.033 | 0.954 | 0.035 | 1.009 | 0.035 | 1.009 | | C-22 Docosane | 0.067 | 0.963 | 0.066 | 0.954 | 0.070 | 1.009 | 0.070 | 1.009 | | C-23 Tricosane | 0.037 | 0.963 | 0.037 | 0.954 | 0.039 | 1.009 | 0.039 | 1.009 | | C-24 Tetracosane | 0.059 | 0.963 | 0.059 | 0.954 | 0.062 | 1.009 | 0.062 | 1.009 | | C-25 Pentacosane | 0.188 | 0.963 | 0.186 | 0.954 | 0.197 | 1.009 | 0.197 | 1.009 | | C-26 Hexacosane | 0.159 | 0.963 | 0.157 | 0.954 | 0.166 | 1.009 | 0.166 | 1.009 | | C-27 Heptacosane | 0.125 | 0.963 | 0.124 | 0.954 | 0.131 | 1.009 | 0.131 | 1.009 | | C-28 Octacosane | 0.201 | 0.963 | 0.199 | 0.954 | 0.210 | 1.009 | 0.210 | 1.009 | | C-29 Nonacosane | 0.151 | 0.963 | 0.150 | 0.954 | 0.158 | 1.009 | 0.158 | 1.009 | | C-30 Triacontane | 0.084 | 0.963 | 0.083 | 0.954 | 0.088 | 1.009 | 0.088 | 1.009 | | C-31 Hentriacontane | 0.085 | 0.963 | 0.084 | 0.954 | 0.089 | 1.009 | 0.089 | 1.009 | | C-32 Dotriacontane | 0.049 | 0.963 | 0.048 | 0.954 | 0.051 | 1.009 | 0.051 | 1.009 | | C-33 Tritriacontane | 0.071 | 0.963 | 0.071 | 0.954 | 0.075 | 1.009 | 0.075 | 1.009 | | C-34 Tetratriacontane | 0.070 | 0.963 | 0.069 | 0.954 | 0.073 | 1.009 | 0.073 | 1.009 | | C-35 Pentatriacontane | 0.035 | 0.963 | 0.034 | 0.954 | 0.036 | 1.009 | 0.036 | 1.009 | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 35238 | 15-001 PS | 35238 | 16-001 PS | 35238 | 17-001 PS | 35238 | 18-001 PS | |----------------------------|-------|-----------|------------|-----------|-------|-----------|-------|-----------| | RCAT ID | 2010 | 355-09 | 2010 | 355-10 | 2010 | 355-11 | 2010 | 355-12 | | Sample Matrix | w | /ater | \ A | /ater | | /ater | | | | Analytical Instrument | | istang | | | | | | ater | | % Moisture | IVIU | • | IVIL | stang | ML | istang | | stang | | | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 052 | 1 | 048 | g | 991 | 9 | 91 | | Sample Unit-Basis | | ml | | ml | | ml | | ml | | Units | n | g/L | n | g/L | | g/L | | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | Naphthalene | 0.213 | 4.753 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C1-Naphthalenes | 0.213 | 4.753 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C2-Naphthalenes | 0.213 | 4.753 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C3-Naphthalenes | 0.213 | 4.753 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C4-Naphthalenes | 0.213 | 4.753 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | Fluorene | 0.489 | 4.753 | 0.491 | 4.771 | 0.491 | 4,771 | 0.491 | 4.771 | | C1-Fluorenes | 0.489 | 4.753 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | C2-Fluorenes | 0.489 | 4.753 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | C3- Fluorenes | 0.489 | 4.753 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | Dibenzothiophene | 0.626 | 4.753 | 0.629
 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C1-Dibenzothiophenes | 0.626 | 4.753 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C2-Dibenzothiophenes | 0.626 | 4.753 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C3- Dibenzothiophenes | 0.626 | 4.753 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | Phenanthrene | 0.364 | 4.753 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C1-Phenanthrenes | 0.364 | 4.753 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C2-Phenanthrenes | 0.364 | 4.753 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C3-Phenanthrenes | 0.364 | 4.753 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C4-Phenanthrenes | 0.364 | 4.753 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | Anthracene | 0.378 | 4.753 | 0.380 | 4.771 | 0.380 | 4.771 | 0.380 | 4.771 | | Fluoranthene | 0.649 | 4.753 | 0.651 | 4.771 | 0.651 | 4.771 | 0.651 | 4.771 | | Pyrene | 0.769 | 4.753 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | C1- Pyrenes | 0.769 | 4.753 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | C2- Pyrenes | 0.769 | 4.753 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | C3- Pyrenes | 0.769 | 4.753 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | C4- Pyrenes | 0.769 | 4.753 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | Naphthobenzothiophene | 0.626 | 4.753 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C-1 Naphthobenzothiophenes | 0.626 | 4.753 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C-2 Naphthobenzothiophenes | 0.626 | 4.753 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C-3 Naphthobenzothiophenes | 0.626 | 4.753 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | Benzo (a) Anthracene | 1.044 | 4.753 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | Chrysene | 1.044 | 4.753 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C1- Chrysenes | 1.044 | 4.753 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C2- Chrysenes | 1.044 | 4.753 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C3- Chrysenes | 1.044 | 4.753 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C4- Chrysenes | 1.044 | 4.753 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | Benzo (b) Fluoranthene | 0.714 | 4.753 | 0.717 | 4.771 | 0.717 | 4.771 | 0.717 | 4.771 | | Benzo (k) Fluoranthene | 0.671 | 4.753 | 0.673 | 4.771 | 0.673 | 4.771 | 0.673 | 4.771 | | Benzo (e) Pyrene | 0.959 | 4.753 | 0.963 | 4.771 | 0.963 | 4.771 | 0.963 | 4.771 | | Benzo (a) Pyrene | 0.801 | 4.753 | 0.804 | 4.771 | 0.804 | 4.771 | 0.804 | 4.771 | | Perylene | 0.255 | 4.753 | 0.256 | 4.771 | 0.256 | 4.771 | 0.256 | 4.771 | | Indeno (1,2,3 - cd) Pyrene | 1.863 | 4.753 | 1.870 | 4.771 | 1.870 | 4.771 | 1.870 | 4.771 | | Dibenzo (a,h) anthracene | 1.626 | 4.753 | 1.632 | 4.771 | 1.632 | 4.771 | 1.632 | 4.771 | | Benzo (g,h,i) perylene | 2.097 | 4.753 | 2.105 | 4.771 | 2.105 | 4.771 | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Client ID | 3523819-001 PS | 3523820-001 PS | 3523821-001 PS | 3523822-001 PS | |------------------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010355-13 | 2010355-14 | 2010355-15 | 2010355-16 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1038 | 1050 | 1047 | 1038 | | Sample Unit-Basis | ml | ml | mi | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | | | nC-11 Undecane | Ü | Ü | U | U | | nC-12 Dodecane | Ü | U | U | U | | nC-13 Tridecane | Ü | U | U | U | | nC-14 Tetradecane | Ú | Ü | U | U | | nC-15 Pentadecane | Ú | U | U | U
U | | nC-16 Hexadecane | Ü | Ŭ | U | U | | nC-17 Heptadecane | Ü | Ü | Ü | U | | Pristane | Ü | Ü | Ü | U | | nC-18 Octadecane | Ü | Ü | Ü | U | | Phytane | Ü | 0.082 J | Ü | U | | nC-19 Nonadecane | Ü | U | Ü | U | | nC-20 Eicosane | U | U | U | U | | nC-21 Heneicosane | U | U | Ü | U | | nC-22 Docosane | U | U | U | U | | nC-23 Tricosane | U | 0.041 J | U | U | | nC-24 Tetracosane | U | U | U | Ü | | nC-25 Pentacosane | U | Ü | Ü | Ü | | nC-26 Hexacosane | U | Ü | U | Ü | | nC-27 Heptacosane | U | 0.129 J | U | Ü | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | 0.233 J | Ü | Ü | | nC-30 Triacontane | U | 0.305 J | Ü | U | | nC-31 Hentriacontane | U | 0.466 J | Ü | 0.136 J | | nC-32 Dotriacontane | U | 0.298 J | Ü | U | | nC-33 Tritriacontane | υ | 0.243 J | Ü | U | | nC-34 Tetratriacontane | υ | 0.184 J | Ü | U | | nC-35 Pentatriacontane | U | 0.161 J | U | 0.056 J | | Total Alkanes | 0.000 | 2.14 | 0.000 | 0.192 | | Surrogate Recovery (%) | | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | • | | | | | |------------------------------------|----------------|----------------|----------------|----------------| | Client ID | 3523819-001 PS | 3523820-001 PS | 3523821-001 PS | 3523822-001 PS | | RCAT ID | 2010355-13 | 2010355-14 | 2010355-15 | 2010255.46 | | Sample Matrix | Water | | | 2010355-16 | | Analytical Instrument | | Water | Water | Water | | | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | 0 | 0 | 0 | 0 | | Sample Size | 1038 | 1050 | 1047 | 1038 | | Sample Unit-Basis | ml | ml | ml | mi | | Units | ng/L | ng/L | ng/L | ng/L | | Naphthalene | | | | | | C1-Naphthalenes | Ü | U | U | U | | C2-Naphthalenes | U | U | U | U | | C3-Naphthalenes | Ü | U | U | U | | C4-Naphthalenes | U | U | U | 0.247 J | | Fluorene | U | U | U | U | | C1-Fluorenes | U | U | U | U | | C2-Fluorenes | U | U | U | U | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene | U | U | U | U | | · | U | U | U | U | | C1-Dibenzothiophenes | U | U | U | U | | C2-Dibenzothiophenes | U | U | U | U | | C3- Dibenzothiophenes Phenanthrene | U | U | U | U | | C1-Phenanthrenes | U | U | U | υ | | | U | U | U | U | | C2-Phenanthrenes | U | U | U | U | | C3-Phenanthrenes | U | U | U | U | | C4-Phenanthrenes | U | U | U | U | | Anthracene | U | U | U | U | | Fluoranthene | U | U | U | U | | Pyrene | U | U | U | υ | | C1- Pyrenes | U | U | U | υ | | C2- Pyrenes | U | U | U | U | | C3- Pyrenes | U | U | U | U | | C4- Pyrenes | U | U | U | Ú | | Naphthobenzothiophene | U | U | U | U | | C-1 Naphthobenzothiophenes | U | U | U | U | | C-2 Naphthobenzothiophenes | U | U | U | U | | C-3 Naphthobenzothiophenes | U | U | U | U | | Benzo (a) Anthracene | U | U | U | U | | Chrysene | U | U | U | U | | C1- Chrysenes | U | U | U | U | | C2- Chrysenes | U | U | U | U | | C3- Chrysenes | U | U | U | U | | C4- Chrysenes | U | U | U | U | | Benzo (b) Fluoranthene | U | U | U | Ü | | Benzo (k) Fluoranthene | U | U | Ü | Ū | | Benzo (e) Pyrene | U | U | U | Ū | | Benzo (a) Pyrene | U | U | U | Ū | | Perylene | U | U | Ü | Ŭ | | Indeno (1,2,3 - cd) Pyrene | U | U | Ü | ŭ | | Dibenzo (a,h) anthracene | U | U | Ū | ŭ | | Benzo (g,h,i) perylene | U | U | U | ŭ | | Total Aromatics | 0.000 | 0.000 | 0.000 | 0.247 | | | | | | | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | rioject Name. | St. Croix Spili | | | | | | | | |------------------------|-----------------|-----------|--------------|------------|-------|-----------|--------|-----------| | Client ID | 35238 | 19-001 PS | 35238 | 20-001 PS | 35238 | 21-001 PS | 352382 | 22-001 PS | | RCAT ID | 2010355-13 | | 2010 | 2010355-14 | |)355-15 | 2010 | 355-16 | | Sample Matrix | Water | | W | /ater | | /ater | | ater | | Analytical Instrument | Mu | ustang | Mι | ıstang | | istang | | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | .038 | 1 | 050 | 1 | 047 | | 038 | | Sample Unit-Basis | | ml | | mi | | ml | | mi | | Units | ι | ıg/L | u | ıg/L | | g/L | | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.963 | 0.016 | 0.952 | 0.016 | 0.955 | 0.016 | 0.963 | | nC-11 Undecane | 0.012 | 0.963 | 0.012 | 0.952 | 0.012 | 0.955 | 0.012 | 0.963 | | nC-12 Dodecane | 0.014 | 0.963 | 0.014 | 0.952 | 0.014 | 0.955 | 0.014 | 0.963 | | nC-13 Tridecane | 0.011 | 0.963 | 0.011 | 0.952 | 0.011 | 0.955 | 0.011 | 0.963 | | nC-14 Tetradecane | 0.026 | 0.963 | 0.026 | 0.952 | 0.026 | 0.955 | 0.026 | 0.963 | | nC-15 Pentadecane | 0.023 | 0.963 | 0.023 | 0.952 | 0.023 | 0.955 | 0.023 | 0.963 | | nC-16 Hexadecane | 0.022 | 0.963 | 0.021 | 0.952 | 0.021 | 0.955 | 0.022 | 0.963 | | nC-17 Heptadecane | 0.046 | 0.963 | 0.046 | 0.952 | 0.046 | 0.955 | 0.046 | 0.963 | | Pristane | 0.045 | 0.963 | 0.044 | 0.952 | 0.044 | 0.955 | 0.045 | 0.963 | | nC-18 Octadecane | 0.068 | 0.963 | 0.067 | 0.952 | 0.067 | 0.955 | 0.068 | 0.963 | | Phytane | 0.070 | 0.963 | 0.069 | 0.952 | 0.069 | 0.955 | 0.070 | 0.963 | | nC-19 Nonadecane | 0.038 | 0.963 | 0.038 | 0.952 | 0.038 | 0.955 | 0.038 | 0.963 | | nC-20 Eicosane | 0.040 | 0.963 | 0.039 | 0.952 | 0.040 | 0.955 | 0.040 | 0.963 | | nC-21 Heneicosane | 0.033 | 0.963 | 0.033 | 0.952 | 0.033 | 0.955 | 0.033 | 0.963 | | nC-22 Docosane | 0.067 | 0.963 | 0.066 | 0.952 | 0.066 | 0.955 | 0.067 | 0.963 | | nC-23 Tricosane | 0.037 | 0.963 | 0.037 | 0.952 | 0.037 | 0.955 | 0.037 | 0.963 | | nC-24 Tetracosane | 0.059 | 0.963 | 0.059 | 0.952 | 0.059 | 0.955 | 0.059 | 0.963 | | nC-25 Pentacosane | 0.188 | 0.963 | 0.186 | 0.952 | 0.186 | 0.955 | 0.188 | 0.963 | | nC-26 Hexacosane | 0.159 | 0.963 | 0.157 | 0.952 | 0.157 | 0.955 | 0.159 | 0.963 | | nC-27 Heptacosane | 0.125 | 0.963 | 0.124 | 0.952 | 0.124 | 0.955 | 0.135 | 0.963 | | nC-28 Octacosane | 0.201 | 0.963 | 0.199 | 0.952 | 0.199 | 0.955 | 0.723 | 0.963 | | nC-29
Nonacosane | 0.151 | 0.963 | 0.150 | 0.952 | 0.150 | 0.955 | 0.201 | 0.963 | | nC-30 Triacontane | 0.084 | 0.963 | 0.083 | 0.952 | 0.083 | 0.955 | 0.084 | 0.963 | | nC-31 Hentriacontane | 0.085 | 0.963 | 0.084 | 0.952 | 0.084 | 0.955 | 0.085 | 0.963 | | nC-32 Dotriacontane | 0.049 | 0.963 | 0.048 | 0.952 | 0.048 | 0.955 | 0.049 | 0.963 | | nC-33 Tritriacontane | 0.071 | 0.963 | 0.070 | 0.952 | 0.071 | 0.955 | 0.049 | 0.963 | | nC-34 Tetratriacontane | 0.070 | 0.963 | 0.069 | 0.952 | 0.069 | 0.955 | 0.071 | 0.963 | | nC-35 Pentatriacontane | 0.035 | 0.963 | 0.034 | 0.952 | 0.034 | 0.955 | 0.070 | 0.963 | | | | | - | 2.502 | 0.004 | 0.000 | 0.035 | 0.903 | ### Louisiana State University **Department of Environmental Sciences** Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Client ID | 35238 | 19-001 PS | 35238 | 20-001 PS | 35238 | 21-001 PS | 352382 | 22-001 PS | |----------------------------|---------------------|-----------|--------|------------|-------|------------|--------|------------| | RCAT ID | 2010355-13 2010355- | | 355-14 | 2010355-15 | | 2010355-16 | | | | Sample Matrix | W | /ater | W | Water | | Water | | ater | | Analytical Instrument | | istang | | stang | | | | | | % Moisture | IVIC | 0 | IVIC | - | ML | ustang | | stang | | | | | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 038 | 1 | 050 | 1 | .047 | 10 | 038 | | Sample Unit-Basis | | ml | | ml | | ml | , | ml | | Units | r | ıg/L | n | g/L | | ıg/L | | r.,
g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | Naphthalene | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | 0,214 | 4.771 | | C1-Naphthalenes | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C2-Naphthalenes | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C3-Naphthalenes | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C4-Naphthalenes | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | Fluorene | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | C1-Fluorenes | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | C2-Fluorenes | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4,771 | | C3- Fluorenes | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | Dibenzothiophene | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C1-Dibenzothiophenes | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C2-Dibenzothiophenes | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C3- Dibenzothiophenes | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | Phenanthrene | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C1-Phenanthrenes | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C2-Phenanthrenes | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C3-Phenanthrenes | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C4-Phenanthrenes | 0.365 | 4.771 | 0.365 | 4,771 | 0.365 | 4.771 | 0.365 | 4.771 | | Anthracene | 0.380 | 4.771 | 0.380 | 4.771 | 0.380 | 4.771 | 0.380 | 4.771 | | Fluoranthene | 0.651 | 4.771 | 0.651 | 4.771 | 0.651 | 4.771 | 0.651 | 4.771 | | Pyrene | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4,771 | | C1- Pyrenes | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | C2- Pyrenes | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | C3- Pyrenes | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | 24- Pyrenes | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | laphthobenzothiophene | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C-1 Naphthobenzothiophenes | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C-2 Naphthobenzothiophenes | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C-3 Naphthobenzothiophenes | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | enzo (a) Anthracene | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | Chrysene | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C1- Chrysenes | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | 2- Chrysenes | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C3- Chrysenes | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | 4- Chrysenes | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | enzo (b) Fluoranthene | 0.717 | 4.771 | 0.717 | 4.771 | 0.717 | 4.771 | 0.717 | 4.771 | | enzo (k) Fluoranthene | 0.673 | 4.771 | 0.673 | 4.771 | 0.673 | 4.771 | 0.673 | 4.771 | | enzo (e) Pyrene | 0.963 | 4.771 | 0.963 | 4.771 | 0.963 | 4.771 | 0.963 | 4.771 | | enzo (a) Pyrene | 0.804 | 4.771 | 0.804 | 4.771 | 0.804 | 4.771 | 0.804 | 4.771 | | erylene | 0.256 | 4.771 | 0.256 | 4.771 | 0.256 | 4.771 | 0.256 | 4.771 | | ndeno (1,2,3 - cd) Pyrene | 1.870 | 4.771 | 1.870 | 4.771 | 1.870 | 4.771 | 1.870 | 4.771 | | Dibenzo (a,h) anthracene | 1.632 | 4.771 | 1.632 | 4.771 | 1.632 | 4.771 | 1.632 | 4.771 | | Benzo (g,h,i) perylene | 2.105 | 4.771 | 2.105 | 4.771 | 2.105 | 4.771 | 2.105 | 4.771 | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Client: | Hovensa | | | |------------------------|-----------------|-------------------|--| | Project Name: | St. Croix Spill | | | | | | | | | Client ID | 3523822-002 PS | 3523823-001 PS | | | | | | | | RCAT ID | 2010355-17 | 2010355-18 | | | Sample Matrix | Water | Water | | | Analytical Instrument | Mustang | Mustang | | | % Moisture | 0 | 0 | | | % Lipid | | | | | Sample Size | 1052 | 1040 | | | Sample Unit-Basis | m! | ml | | | Units | ug/L | ug/L | | | nC-10 Decane | | | | | nC-11 Undecane | U | U | | | nC-12 Dodecane | U | U | | | nC-13 Tridecane | U | U | | | nC-14 Tetradecane | U | U | | | nC-15 Pentadecane | U | U | | | nC-16 Hexadecane | U | U | | | nC-17 Heptadecane | U | U | | | Pristane | U | U | | | nC-18 Octadecane | U | U | | | Phytane | U | U | | | nC-19 Nonadecane | U | U | | | nC-20 Eicosane | U | U | | | nC-21 Heneicosane | U | U | | | nC-22 Docosane | U
U | U | | | nC-23 Tricosane | = | U | | | nC-24 Tetracosane | U | U | | | nC-25 Pentacosane | U | U | | | nC-26 Hexacosane | U | V | | | nC-27 Heptacosane | U | U | | | nC-28 Octacosane | U | U | | | nC-29 Nonacosane | U | U | | | nC-30 Triacontane | | 0.169 J | | | nC-31 Hentriacontane | U
U | U | | | nC-32 Dotriacontane | | U | | | nC-33 Tritriacontane | U
U | U | | | nC-34 Tetratriacontane | U | U | | | nC-35 Pentatriacontane | U | U | | | Total Alkanes | 0.000 | ∪
0.169 | | | , oter / marics | 0.000 | บ.าธุ์ | | | Surrogate Recovery (%) | | | |------------------------|---|---| | 5 Alpha Androstane | 0 | 0 | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Client: | Hovensa | | | |--|-----------------|----------------|--| | Project Name: | St. Croix Spill | | | | | | | | | Client ID | 3523822-002 PS | 3523823-001 PS | | | RCAT ID | 2010355-17 | 2010355-18 | | | Sample Matrix | Water | Water | | | Analytical Instrument | Mustang | Mustang | | | % Moisture | 0 | 0 | | | % Lipid | 0 | 0 | | | Sample Size | 1052 | | | | Sample Unit-Basis | | 1040 | | | Units | ml
ng/l | ml
 | | | Office | ng/L | ng/L | | | Naphthalene | U | U | | | C1-Naphthalenes | Ü | Ü | | | C2-Naphthalenes | Ū | Ŭ | | | C3-Naphthalenes | U | Ü | | | C4-Naphthalenes | Ü | Ü | | | Fluorene | U | Ŭ | | | C1-Fluorenes | U | Ü | | | C2-Fluorenes | U | Ü | | | C3- Fluorenes | U | U | | | Dibenzothiophen e | U | U | | | C1-Dibenzothiophenes | U | U | | | C2-Dibenzothiophenes | U | U | | | C3- Dibenzothiophenes | U | U | | | Phenanthrene | U | U | | | C1-Phenanthrenes | U | U | | | C2-Phenanthrenes | U | U | | | C3-Phenanthrenes | U | U | | | C4-Phenanthrenes | U | U | | | Anthracene | U | U | | | uoranthene | U | U | | | Pyrene | U | U | | | C1- Pyrenes | U | U | | | C2- Pyrenes | U | U | | | C3- Pyrenes | U | Ų | | | C4- Pyrenes | U | U | | | Naphthobenzothiophene | Ŭ | U | | | C-1 Naphthobenzothiophenes | U | U | | | C-2 Naphthobenzothiophenes
C-3 Naphthobenzothiophenes | U | Ü | | | 3-3 Naphthobenzothiophenes
Benzo (a) Anthracene | U | U | | | Senzo (a) Anthracene
Chrysene | U | U | | | Chrysenes | U
U | U | | | C2- Chrysenes | U | υ | | | C3- Chrysenes | U
U | U | | | C4- Chrysenes | U | U | | | Benzo (b) Fluoranthene | U | U | | | lenzo (k) Fluoranthene | U | U | | | Senzo (e) Pyrene | U | U
U | | | Senzo (a) Pyrene | Ü | U | | | Perylene | Ü | U | | | ndeno (1,2,3 - cd) Pyrene | Ü | U | | | Dibenzo (a,h) anthracene | Ŭ | U | | | Benzo (g,h,i) perylene | Ü | Ü | | | Total Aromatics | 0.000 | 0.000 | | | % Surrogate Recovery | | | |----------------------|---|---| | Phenanthrene d-10 | 0 | 0 | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Project Name: | roject Name. | | | | | | |------------------------|--------|-----------|--------|----------|--| | Client ID | 352382 | 22-002 PS | 352382 | 3-001 PS | | | RCATID | 2010 | 355-17 | 2010 | 355-18 | | | Sample Matrix | | ater | | ater | | | Analytical Instrument | | stang | | stang | | | % Moisture | | 0 | | 0 | | | % Lipid | | 0 | | 0 | | | Sample Síze | | 052 | | 040 | | | Sample Unit-Basis | | ni | | nl | | | Units | | g/L | | g/L | | | | MDL | RQL | MDL | RQL | | | nC-10 Decane | 0.016 | 0.951 | 0.016 | 0.962 | | | nC-11 Undecane | 0.012 | 0.951 | 0.012 | 0.962 | | | nC-12 Dodecane | 0.014 | 0.951 | 0.014 | 0.962 | | | nC-13 Tridecane | 0.011 | 0.951 | 0.011 | 0.962 | | | nC-14 Tetradecane | 0.026 | 0.951 | 0.026 | 0.962 | | | nC-15 Pentadecane | 0.023 | 0.951 | 0.023 | 0.962 | | | nC-16 Hexadecane | 0.021 | 0.951 | 0.022 |
0.962 | | | nC-17 Heptadecane | 0.046 | 0.951 | 0.046 | 0.962 | | | Pristane | 0.044 | 0.951 | 0.045 | 0.962 | | | nC-18 Octadecane | 0.067 | 0.951 | 0.068 | 0.962 | | | Phytane | 0.069 | 0.951 | 0.070 | 0.962 | | | nC-19 Nonadecane | 0.037 | 0.951 | 0.038 | 0.962 | | | nC-20 Eicosane | 0.039 | 0.951 | 0.040 | 0.962 | | | nC-21 Heneicosane | 0.033 | 0.951 | 0.033 | 0.962 | | | nC-22 Docosane | 0.066 | 0.951 | 0.067 | 0.962 | | | nC-23 Tricosane | 0.037 | 0.951 | 0.037 | 0.962 | | | nC-24 Tetracosane | 0.059 | 0.951 | 0.059 | 0.962 | | | nC-25 Pentacosane | 0.185 | 0.951 | 0.187 | 0.962 | | | nC-26 Hexacosane | 0.157 | 0.951 | 0.158 | 0.962 | | | nC-27 Heptacosane | 0.124 | 0.951 | 0.125 | 0.962 | | | nC-28 Octacosane | 0.198 | 0.951 | 0.200 | 0.962 | | | nC-29 Nonacosane | 0.149 | 0.951 | 0.151 | 0.962 | | | nC-30 Triacontane | 0.083 | 0.951 | 0.083 | 0.962 | | | nC-31 Hentriacontane | 0.084 | 0.951 | 0.085 | 0.962 | | | nC-32 Dotriacontane | 0.048 | 0.951 | 0.049 | 0.962 | | | nC-33 Tritriacontane | 0.070 | 0.951 | 0.071 | 0.962 | | | nC-34 Tetratriacontane | 0.069 | 0.951 | 0.070 | 0.962 | | | nC-35 Pentatriacontane | 0.034 | 0.951 | 0.034 | 0.962 | | | | | | | | | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Project Name: | · · -y · · | | | | | |----------------------------|----------------|----------------|----------------|----------------| | Client ID | 352382 | 22-002 PS | 352382 | 23-001 PS | | RCAT ID | 2010 | 355-17 | 2010 | 255.40 | | | | | | 355-18 | | Sample Matrix | | ater | W | ater | | Analytical Instrument | Mu | stang | Mu | stang | | % Moisture | | 0 | | 0 | | % Lipid | | 0 | | 0 | | Sample Size | 10 | 052 | 10 | 040 | | Sample Unit-Basis | r | nl | | ml | | Units | | | | | | 0.000 | MDL | g/L
RQL | MDL n | g/L | | Naphthalene | 0.213 | 4.753 | 0.213 | RQL
4.753 | | C1-Naphthalenes | 0.213 | 4.753 | 0.213 | 4.753
4.753 | | C2-Naphthalenes | 0.213 | 4.753 | 0.213 | 4.753 | | C3-Naphthalenes | 0.213 | 4.753 | 0.213 | 4.753 | | C4-Naphthalenes | 0.213 | 4.753 | 0.213 | 4.753 | | Fluorene | 0.489 | 4.753 | 0.489 | 4.753 | | C1-Fluorenes | 0.489 | 4.753 | 0.489 | 4.753 | | C2-Fluorenes | 0.489 | 4.753 | 0.489 | 4.753 | | C3- Fluorenes | 0.489 | 4.753 | 0.489 | 4.753 | | Dibenzothiophene | 0.626 | 4.753 | 0.626 | 4.753 | | C1-Dibenzothiophenes | 0.626 | 4.753 | 0.626 | 4.753 | | C2-Dibenzothiophenes | 0.626 | 4.753 | 0.626 | 4.753 | | C3- Dibenzothiophenes | 0.626 | 4.753 | 0.626 | 4.753 | | Phenanthrene | 0.364 | 4.753 | 0.364 | 4.753 | | C1-Phenanthrenes | 0.364 | 4.753 | 0.364 | 4.753 | | C2-Phenanthrenes | 0.364 | 4.753 | 0.364 | 4.753 | | C3-Phenanthrenes | 0.364 | 4.753 | 0.364 | 4.753 | | C4-Phenanthrenes | 0.364 | 4.753 | 0.364 | 4.753 | | Anthracene
Fluoranthene | 0.378 | 4.753 | 0.378 | 4.753 | | Pyrene | 0.649 | 4.753 | 0.649 | 4.753 | | C1- Pyrenes | 0.769
0.769 | 4.753
4.753 | 0.769 | 4.753 | | C2- Pyrenes | 0.769 | | 0.769 | 4.753 | | C3- Pyrenes | 0.769 | 4.753
4.753 | 0.769 | 4.753 | | C4- Pyrenes | 0.769 | 4.753
4.753 | 0.769
0.769 | 4.753
4.753 | | Naphthobenzothiophene | 0.626 | 4.753 | 0.626 | 4.753
4.753 | | C-1 Naphthobenzothiophenes | 0.626 | 4.753 | 0.626 | 4.753
4.753 | | C-2 Naphthobenzothiophenes | 0.626 | 4.753 | 0.626 | 4.753 | | C-3 Naphthobenzothiophenes | 0.626 | 4.753 | 0.626 | 4.753 | | Benzo (a) Anthracene | 1.044 | 4.753 | 1.044 | 4.753 | | Chrysene | 1.044 | 4.753 | 1.044 | 4.753 | | C1- Chrysenes | 1.044 | 4.753 | 1.044 | 4.753 | | C2- Chrysenes | 1.044 | 4.753 | 1.044 | 4.753 | | C3- Chrysenes | 1.044 | 4.753 | 1.044 | 4.753 | | C4- Chrysenes | 1.044 | 4.753 | 1.044 | 4.753 | | Benzo (b) Fluoranthene | 0.714 | 4.753 | 0.714 | 4.753 | | Benzo (k) Fluoranthene | 0.671 | 4.753 | 0.671 | 4.753 | | Benzo (e) Pyrene | 0.959 | 4.753 | 0.959 | 4.753 | | Benzo (a) Pyrene | 0.801 | 4.753 | 0.801 | 4.753 | | Perylene | 0.255 | 4.753 | 0.255 | 4.753 | | Indeno (1,2,3 - cd) Pyrene | 1.863 | 4.753 | 1.863 | 4.753 | | Dibenzo (a,h) anthracene | 1.626 | 4.753 | 1.626 | 4.753 | | Benzo (g,h,i) perylene | 2.097 | 4.753 | 2.097 | 4.753 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Project Name: Hovensa St. Croix Spill | • | | | | | |----------------------------------|----------------|--------------------|----------------|----------------| | Client ID | 3523824-001 PS | 3523825-001 PS | 3523826-001 PS | 3523827-001 PS | | RCAT ID | 2010355-19 | 2010355-20 | 2010355-21 | 2010355-22 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1046 | 1050 | 1049 | 943 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | | | | | | | U | U | U | U | | nC-11 Undecane
nC-12 Dodecane | 0.023 J | U | U | U | | nC-13 Tridecane | U | U | U | U | | nC-14 Tetradecane | U | U | U | U | | nC-15 Pentadecane | U | U | U | U | | nC-16 Hexadecane | U | 0.030 J | U | U | | nC-17 Heptadecane | 0.037 J | 0.032 J | 0.028 J | U | | Pristane | U
U | U | U | U | | nC-18 Octadecane | | U | U | U | | Phytane | U | U | U | U | | nC-19 Nonadecane | U
U | U | U | U | | nC-20 Eicosane | U | U | U | U | | nC-21 Heneicosane | Ü | U | U | U | | nC-22 Docosane | Ü | U | U | U | | nC-23 Tricosane | U | 0.050 | U | U | | nC-24 Tetracosane | Ü | 0.056 J | U | U | | nC-25 Pentacosane | Ü | 0.109 J
0.334 J | U | U | | nC-26 Hexacosane | Ü | 0.302 J | U | U | | nC-27 Heptacosane | U | 0.263 J | U | U | | nC-28 Octacosane | U | 0.263 J
0.365 J | U | U | | nC-29 Nonacosane | Ü | 0.351 J | U | U | | nC-30 Triacontane | U | 0.107 J | U | U | | nC-31 Hentriacontane | Ü | 0.505 J | U
U | U | | nC-32 Dotriacontane | U | 0.303 J
U | U | U | | nC-33 Tritriacontane | U | 0.154 J | U | U | | nC-34 Tetratriacontane | Ü | U.134 3 | U | U | | nC-35 Pentatriacontane | Ü | Ü | U | U | | Total Alkanes | 0.059 | 2.61 | 0.028 | 0.000 | | | | | 7.727 | 0.000 | | Surrogate Recovery (%) | | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Client: | Hovensa | |-----------------|-----------------| | Project Name: | St. Croix Spill | | Client ID | 3523824-001 PS | 3523825-001 PS | 3523826-001 PS | 3523827-001 PS | |---|----------------|------------------|----------------|----------------| | RCAT ID | 2010355-19 | 2010355-20 | 2010355-21 | 2010355-22 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | | | | % Moisture | | • | Mustang | Mustang | | | 0 | 0 | 0 | 0 | | % Lipid | 0.000 | 0 | 0 | 0 | | Sample Size | 1046 | 1050 | 1049 | 943 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Naphthalene | U | U | Ü | 1.18 | | C1-Naphthalenes | Ü | Ü | Ŭ | 1.18 | | C2-Naphthalenes | Ü | Ü | Ŭ | Ü | | C3-Naphthalenes | Ū | Ũ | Ü | Ü | | C4-Naphthalenes | Ü | Ũ | Ü | Ü | | Fluorene | Ũ | Ü | Ü | Ü | | C1-Fluorenes | ŭ | Ü | Ŭ | Ŭ | | C2-Fluorenes | Ū | Ü | Ü | Ŭ | | C3- Fluorenes | Ŭ | Ü | ŭ | Ü | | Dibenzothiophene | Ü | Ü | ŭ | Ü | | C1-Dibenzothiophenes | Ü | Ü | Ŭ | Ü | | C2-Dibenzothiophenes | Ű | Ü | Ü | U | | C3- Dibenzothiophenes | ŭ | Ü | Ü | U | | Phenanthrene | Ű | 3.64 J | U | U | | C1-Phenanthrenes | Ü | 19.4 | Ü | U | | C2-Phenanthrenes | ŭ | 22.4 | Ü | = | | C3-Phenanthrenes | Ü | 24.8 | U | Ü | | C4-Phenanthrenes | Ü | 24.0
U | U | U | | Anthracene | Ü | 4.19 J | U | U | | Fluoranthene | Ü | 4.19 J
3.42 J | _ | U | | Pyrene | Ü | 3.42 J
4.85 | U
U | U | | C1- Pyrenes | Ü | 4.65
U | U | Ü | | C2- Pyrenes | Ü | - | = | U | | C3- Pyrenes | U | 12.6 | U | U | | C4- Pyrenes | Ü | 33.9
U | U | Ü | | Naphthobenzothiophene | Ü | U | Ų | Ü | | C-1 Naphthobenzothiophenes | Ü | | U | U | | C-2 Naphthobenzothiophenes | Ü | 28.0
22.6 | U
U | U | | C-3 Naphthobenzothiophenes | Ü | 22.6
U | | U | | Benzo (a) Anthracene | Ü | 31.9 | U | Ü | | Chrysene | Ü | 17.8 | U | U | | C1- Chrysenes | υ | | U | U | | C2- Chrysenes | Ü | 138 | U | U | | C3- Chrysenes | Ü | 188 | U | U | | • | | Ü | U | U | | C4- Chrysenes
Benzo (b) Fluoranthene | U | U | U | U | | Benzo (k) Fluoranthene | U | U
U | U | U | | Benzo (e) Pyrene | _ | ~ | U | U | | Benzo (a) Pyrene
Benzo (a) Pyrene | U | 37.2 | U | U | | Perviene | U | 22.6 | U | U | | * | 0.413 J | 19.3 | U | 0.423 J | | Indeno (1,2,3 - cd) Pyrene | U | Ü | U | U | | Dibenzo (a,h) anthracene | U | U | U | U | | Benzo (g,h,i) perylene Total Aromatics | U 443 | U | U | U | | rotal Aromatics | 0.413 | 635 | 0.000 | 1.60 | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | • | st. Croix spili | | | | | | | | |------------------------|-----------------|-----------|--------|-----------|--------|-----------|--------|----------| | Client ID | 35238. | 24-001 PS | 352382 | 25-001 PS | 352382 | 26-001 PS | 352382 | 7-001 PS | | RCAT ID | 2010 | 355-19 | 2010 | 355-20 | 2010 | 355-21 | 2010 | 355-22 | | Sample Matrix | W | ater | w | ater | w | ater | w. | ater | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 046 | 10 | 050 | 1 | 049 | 9 | 43 | | Sample Unit-Basis | | ml | | ni | 1 | ml | r | nl | | Units | u | g/L | u | g/L | u | g/L | uį | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.956 | 0.016 | 0.952 | 0.016 | 0.953 | 0.018 | 1.060 | | nC-11 Undecane | 0.012 | 0.954 | 0.012 | 0.952 | 0.012 |
0.953 | 0.014 | 1.060 | | nC-12 Dodecane | 0.014 | 0.954 | 0.014 | 0.952 | 0.014 | 0.953 | 0.016 | 1.060 | | nC-13 Tridecane | 0.011 | 0.954 | 0.011 | 0.952 | 0.011 | 0.953 | 0.012 | 1.060 | | nC-14 Tetradecane | 0.026 | 0.954 | 0.026 | 0.952 | 0.026 | 0.953 | 0.029 | 1.060 | | nC-15 Pentadecane | 0.023 | 0.954 | 0.023 | 0.952 | 0.023 | 0.953 | 0.025 | 1.060 | | nC-16 Hexadecane | 0.021 | 0.954 | 0.021 | 0.952 | 0.021 | 0.953 | 0.024 | 1.060 | | nC-17 Heptadecane | 0.046 | 0.954 | 0.046 | 0.952 | 0.046 | 0.953 | 0.051 | 1.060 | | Pristane | 0.044 | 0.954 | 0.044 | 0.952 | 0.044 | 0.953 | 0.049 | 1.060 | | nC-18 Octadecane | 0.067 | 0.954 | 0.067 | 0.952 | 0.067 | 0.953 | 0.075 | 1.060 | | Phytane | 0.069 | 0.954 | 0.069 | 0.952 | 0.069 | 0.953 | 0.077 | 1.060 | | nC-19 Nonadecane | 0.038 | 0.954 | 0.038 | 0.952 | 0.038 | 0.953 | 0.042 | 1.060 | | nC-20 Eicosane | 0.040 | 0.954 | 0.039 | 0.952 | 0.040 | 0.953 | 0.044 | 1.060 | | nC-21 Heneicosane | 0.033 | 0.954 | 0.033 | 0.952 | 0.033 | 0.953 | 0.036 | 1.060 | | nC-22 Docosane | 0.066 | 0.954 | 0.066 | 0.952 | 0.066 | 0.953 | 0.074 | 1.060 | | nC-23 Tricosane | 0.037 | 0.954 | 0.037 | 0.952 | 0.037 | 0.953 | 0.041 | 1.060 | | nC-24 Tetracosane | 0.059 | 0.954 | 0.059 | 0.952 | 0.059 | 0.953 | 0.065 | 1.060 | | nC-25 Pentacosane | 0.186 | 0.954 | 0.186 | 0.952 | 0.186 | 0.953 | 0.207 | 1.060 | | nC-26 Hexacosane | 0.157 | 0.954 | 0.157 | 0.952 | 0.157 | 0.953 | 0.175 | 1.060 | | nC-27 Heptacosane | 0.124 | 0.954 | 0.124 | 0.952 | 0.124 | 0.953 | 0.138 | 1.060 | | nC-28 Octacosane | 0.199 | 0.954 | 0.199 | 0.952 | 0.199 | 0.953 | 0.221 | 1.060 | | nC-29 Nonacosane | 0.150 | 0.954 | 0.150 | 0.952 | 0.150 | 0.953 | 0.166 | 1.060 | | nC-30 Triacontane | 0.083 | 0.954 | 0.083 | 0.952 | 0.083 | 0.953 | 0.092 | 1.060 | | nC-31 Hentriacontane | 0.084 | 0.954 | 0.084 | 0.952 | 0.084 | 0.953 | 0.094 | 1.060 | | nC-32 Dotriacontane | 0.048 | 0.954 | 0.048 | 0.952 | 0.048 | 0.953 | 0.054 | 1.060 | | nC-33 Tritriacontane | 0.071 | 0.954 | 0.070 | 0.952 | 0.070 | 0.953 | 0.078 | 1.060 | | nC-34 Tetratriacontane | 0.069 | 0.954 | 0.069 | 0.952 | 0.069 | 0.953 | 0.077 | 1.060 | | nC-35 Pentatriacontane | 0.034 | 0.954 | 0.034 | 0.952 | | | | 1,000 | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Benzo (e) Pyrene 0.965 4.780 0.961 4.762 0.961 4.762 0.961 4.762 Benzo (a) Pyrene 0.806 4.780 0.803 4.762 0.803 4.762 0.803 4.762 Perylene 0.256 4.780 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.874 4.780 1.866 4.762 1.866 4.762 1.866 4.762 | | , | | | | | | | | |--|--------------------------|-------|-----------|-------|-----------|-------|-----------|--------|-----------| | Sample Matrix Water Wate | Client ID | 35238 | 24-001 PS | 35238 | 25-001 PS | 35238 | 26-001 PS | 352382 | 27-001 PS | | Mustange | RCAT ID | 2010 | 355-19 | 2010 | 355-20 | 2010 | 0355-21 | 2010 | 355-22 | | Mustange | Sample Matrix | W | ater ater | W | /ater | W | /ater | w | ater | | Mositure 0 | Analytical Instrument | Mu | stang | Mil | istang | | | | | | Supple 1046 | | | - | | _ | | - | Wid | - | | Sample Size | | | | | | | | | | | Sample Unit Basis | · | | | | | | | | 0 | | Naphthalene | · | | | 1 | 050 | 1 | .049 | g | 43 | | Molt | | | ml | | mi | | ml | 1 | ml | | Naphthalene | Units | | | n | g/L | n | ng/L | n | g/L | | C1-Naphthalenes 0.215 4.780 0.214 4.762 0.490 4.762 0. | N. 100 A | | | | | | RQL | MDL | RQL | | C2-Naphthalenes 0.215 4.780 0.214 4.762 0.490 4.762 0.200 0. | • | | | | | | | | 4.762 | | C3-Naphthalenes 0.215 4.780 0.214 4.762 0.214 4.762 0.214 4.762 0.214 4.762 1.462
1.462 1. | • | | | | | | | | | | C4-Naphthalenes 0 215 | | | | | | | | | | | Fluorene | • | | | | | | | | | | C1-Fluorenes 0.492 4.780 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 C2-Fluorenes 0.492 4.780 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 C3-Fluorenes 0.492 4.780 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.627 4.762 0.6 | | | | | | | | | | | C2-Fluorenes 0.492 4.780 0.490 4.762 0.627 4.762 0.627 | | _ | | | | | | | | | C3- Fluorenes 0.492 4.780 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.597 4.762 0.627 4.762 0.771 4.762 0.77 | | | | | | | | | | | Dibenzothiophene 0.630 4.780 0.827 4.762 0.627 4.762 C1-Dibenzothiophenes 0.630 4.780 0.627 4.762 0.627 4.762 0.627 4.762 C2-Dibenzothiophenes 0.630 4.780 0.627 4.762 0.627 4.762 C3-Dibenzothiophenes 0.630 4.780 0.627 4.762 0.627 4.762 C3-Dibenzothiophenes 0.630 4.780 0.365 4.762 0.627 4.762 0.627 4.762 Phenanthrene 0.366 4.780 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 4.762 0.365 | | | | | | | | | | | C1-Dibenzothiophenes 0,830 4,780 0,627 4,762 0,627 4,762 0,627 4,762 C2-Dibenzothiophenes 0,630 4,780 0,627 4,762 0,771 4,762 0,771
4,762 0,771 4,762 | | | | | | | | | | | C2-Dibenzothiophenes 0.830 4,780 0.627 4,762 0.627 4,762 0.627 4,762 C3-Dibenzothiophenes 0.630 4,780 0.627 4,762 0.771 4,762 | • | | | | | | | | | | C3- Dibenzothlophenes 0.630 4.780 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.365 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379< | · · | | | | | | | | | | Phenanthrene 0.366 4.780 0.365 4.762 0.365 4.762 0.365 4.762 C1-Phenanthrenes 0.366 4.780 0.365 4.762 0.365 4.762 C2-Phenanthrenes 0.366 4.780 0.365 4.762 0.365 4.762 C3-Phenanthrenes 0.366 4.780 0.365 4.762 0.365 4.762 C4-Phenanthrenes 0.366 4.780 0.365 4.762 0.365 4.762 C4-Phenanthrenes 0.366 4.780 0.365 4.762 0.365 4.762 Anthracene 0.381 4.780 0.379 4.762 0.365 4.762 Fluoranthene 0.653 4.780 0.650 4.762 0.771 4.762 Pyrene 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 C1- Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 C2- | C3- Dibenzothiophenes | | | | | | | | | | C1-Phenanthrenes | Phenanthrene | 0.366 | 4.780 | | | | | | | | C2-Phenanthrenes | C1-Phenanthrenes | 0.366 | 4.780 | | | | | | | | C3-Phenanthrenes 0,366 4,780 0,365 4,762 0,365 4,762 0,365 4,762 0,365 4,762 C4-Phenanthrenes 0,366 4,780 0,365 4,762 0,365 4,762 0,365 4,762 0,365 4,762 0,365 4,762 0,365 4,762 0,365 4,762 0,365 4,762 0,365 4,762 0,365 4,762 0,379 4,762 0,371 4,762 0,771 4,762 0,627 4, | C2-Phenanthrenes | 0.366 | 4.780 | 0.365 | | | | | | | C4-Phenanthrenes 0.366 4.780 0.365 4.762 0.365 4.762 0.389 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.771 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 | C3-Phenanthrenes | 0.366 | 4.780 | 0.365 | | | | | | | Anthracene 0.381 4.780 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 1.046 1 | | 0.366 | 4.780 | 0.365 | 4.762 | 0.365 | 4.762 | | | | Fluoranthene 0.653 4.780 0.650 4.762 0.650 4.762 0.650 4.762 0.771 4.762 0.627
4.762 0.627 | | 0.381 | 4.780 | 0.379 | 4.762 | 0.379 | 4.762 | 0.379 | | | C1- Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 C2- Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 C3- Pyrenes 0.774 4.780 0.771 4.762 0.627 4.762 0.627 0.027 | | | | | 4.762 | 0.650 | 4.762 | 0.650 | | | C2- Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 C3- Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 C4- Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.627 0.627 | | | | | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | | C3- Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 C4-Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.627 0.762 0 | , | | | | | 0.771 | 4.762 | 0.771 | 4.762 | | C4- Pyrenes 0.774 4.780 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.627 | | | | | | | 4.762 | 0.771 | 4.762 | | Naphthobenzothiophene 0.630 4.780 0.627 4.762 0.762 0. | | | | |
| | | | 4.762 | | C-1 Naphthobenzothiophenes 0.630 4.780 0.627 4.762 0.627 4.762 0.627 4.762 C-2 Naphthobenzothiophenes 0.630 4.780 0.627 4.762 0.627 4.762 0.627 4.762 C-3 Naphthobenzothiophenes 0.630 4.780 0.627 4.762 0.627 4.762 0.627 4.762 C-3 Naphthobenzothiophenes 0.630 4.780 0.627 4.762 0.627 0.046 4.762 0.762 | * | | | | | | | | | | C-2 Naphthobenzothiophenes 0.630 4.780 0.627 4.762 0.627 4.762 0.627 4.762 C-3 Naphthobenzothiophenes 0.630 4.780 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 Denzo (a) Anthracene 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C-1 Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C-2 Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C-2 Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C-2 Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C-2 Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C-2 Chrysenes 1.050 4.780 1.046 4.762 1.0 | | | | | | | | | _ | | C-3 Naphthobenzothiophenes 0.630 4.780 0.627 4.762 0.627 0.6 | • | | | | _ | | | | | | Benzo (a) Anthracene 1.050 4.780 1.046 4.762 1.046 </td <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | • | | | | | | | | | | Chrysene 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C1- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 C2- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 C3- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C4- Chrysenes 1.050 4.780 1.046 4.762 1 | | | | | | | | _ | | | C1- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 C2- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 C3- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C4- Chrysenes 1.050 4.780 1.046 4.762 1.046
4.762 1.046 4.76 | . , | | | | | | | | | | C2- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 C3- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 C3- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 E6nzo (b) Fluoranthene 0.718 4.780 0.715 4.762 0.715 4.762 0.715 4.762 E6nzo (k) Fluoranthene 0.675 4.780 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 E6nzo (e) Pyrene 0.965 4.780 0.961 4.762 0.961 4.762 0.961 4.762 E6nzo (a) Pyrene 0.806 4.780 0.803 4.762 0.803 4.762 0.803 4.762 E6nzo (a) Pyrene 0.256 4.780 0.255 4.762 | • | | | | | | | | | | C3- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 C4- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 E6DED (b) Fluoranthene 0.718 4.780 0.715 4.762 0.715 4.762 0.715 4.762 E6DED (c) Fluoranthene 0.675 4.780 0.672 4.762 0.672 4.762 0.672 4.762 E6DED (e) Pyrene 0.965 4.780 0.961 4.762 0.961 4.762 0.961 4.762 E6DED (e) Pyrene 0.806 4.780 0.803 4.762 0.803 4.762 0.803 4.762 E6DED (e) E7Prine 0.256 4.780 0.255 4.762 | • | | | | | | | | | | C4- Chrysenes 1.050 4.780 1.046 4.762 1.046 4.762 1.046 4.762 Benzo (b) Fluoranthene 0.718 4.780 0.715 4.762 0.715 4.762 0.715 4.762 Benzo (k) Fluoranthene 0.675 4.780 0.672 4.762 0.672 4.762 0.672 4.762 Benzo (e) Pyrene 0.965 4.780 0.961 4.762 0.961 4.762 0.961 4.762 Benzo (a) Pyrene 0.806 4.780 0.803 4.762 0.803 4.762 0.803 4.762 Perylene 0.256 4.780 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.874 4.780 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 | • | | | | | | - | | | | Benzo (b) Fluoranthene 0.718 4.780 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.803 4.762 0.961 4.762 0.961 4.762 0.961 4.762 0.961 4.762 0.961 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 1.866 4.762 1.866 4.762 1.866 4.762 1.866 4.762 1.629 | C4- Chrysenes | | | | | | | | | | Benzo (k) Fluoranthene 0.675 4.780 0.672 4.762 0.672 4.762 0.672 4.762 Benzo (e) Pyrene 0.965 4.780 0.961 4.762 0.961 4.762 0.961 4.762 Benzo (a) Pyrene 0.806 4.780 0.803 4.762 0.803 4.762 0.803 4.762 Perylene 0.256 4.780 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.874 4.780 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 1.629 4.762 | Benzo (b) Fluoranthene | | | | | | | | | | Benzo (e) Pyrene 0.965 4.780 0.961 4.762 0.961 4.762 0.961 4.762 Benzo (a) Pyrene 0.806 4.780 0.803 4.762 0.803 4.762 0.803 4.762 Perylene 0.256 4.780 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.874 4.780 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a, h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 1.629 4.762 | Benzo (k) Fluoranthene | | | | | | | | | | Benzo (a) Pyrene 0.806 4.780 0.803 4.762 0.803 4.762 0.803 4.762 Perylene 0.256 4.780 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.874 4.780 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 1.629 | Benzo (e) Pyrene | 0.965 | | | | | | | | | Perylene 0.256 4.780 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.874 4.780 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 Porno (a,h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 | Benzo (a) Pyrene | 0.806 | 4.780 | 0.803 | | | | | | | Indeno (1,2,3 - cd) Pyrene 1.874 4.780 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 1.629 4.762 Postra (a,h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 | Perylene | 0.256 | 4.780 | 0.255 | 4.762 | | | | | | Dibenzo (a,h) anthracene 1.635 4.780 1.629 4.762 1.629 4.762 1.629 4.762 | | 1.874 | 4.780 | 1.866 | | | | | | | | Dibenzo (a,h) anthracene | | | | | 1.629 | 4.762 | | | | | Benzo (g,h,i) perylene | 2.109 | 4.780 | 2.101 | 4.762 | 2.101 | 4.762 | 2.101 | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Project Name: Hovensa St. Croix Spill | Client ID | 3523828-001 PS | 152909 BLANK | 152910 LCS | 152911 LCSD | |------------------------|----------------|--------------|------------|-------------| | RCAT ID | 2010355-23 | 2010355-24 | 2010355-25 | 2010355-26 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1048 | 1000 | 1000 | 1000 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | U | | nC-11 Undecane | U | U | U | U | | nC-12 Dodecane | U | υ | U | U | | nC-13 Tridecane | U | U | U | Ü | | nC-14 Tetradecane | U | U | U | U | | nC-15 Pentadecane | U | U | 0.026 J | 0.024 J | | nC-16 Hexadecane | 0.036 J | U | 0.034 J | 0.030 J | | nC-17 Heptadecane | U | U | U | U | | Pristane | U | U | U | U | | nC-18 Octadecane | U | U | U | U | | Phytane | U | U | U | U | | nC-19 Nonadecane | U | U | U | U | | nC-20 Eicosane | U | U | U | U | | nC-21 Heneicosane | U | U | U | U | | nC-22 Docosane | U | U | U | U | | nC-23 Tricosane | U | U | U | U | | nC-24 Tetracosane | U | U | U | U | | nC-25 Pentacosane | U | U | U | U | | nC-26 Hexacosane | U | U | U | U | | nC-27 Heptacosane | U | U | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | U | U | U | | nC-30 Triacontane | U | U | U | U | | nC-31 Hentriacontane | U | U | U | U | | nC-32 Dotriacontane | U | U | U | U | | nC-33 Tritriacontane | U | U | U | U | | nC-34 Tetratriacontane | U | U | U | U | | nC-35
Pentatriacontane | U | U | U | U | | Total Alkanes | 0.036 | 0.000 | 0.060 | 0.054 | | Surrogate Recovery (%) | | | · · · · · · · · · · · · · · · · · · · | *************************************** | |------------------------|---|---|---------------------------------------|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Hovensa Project Name: St. Croix Spill | Sample Matrix Water Mustang | 010355-26
Water
Mustang
0
0
1000
ml | r
B
D
D | |--|---|------------------| | Sample Matrix Water Water Water Analytical Instrument Mustang Mustang Mustang Moisture 0 0 0 \$ Lipid 0 0 0 5 Sample Size 1048 1000 1000 Sample Unit-Basis ml ml ml ml Units ng/L ng/L ng/L ng/L Naphthalene U <td< td=""><td>Water
Mustang
0
0
1000
ml</td><td>r
B
D
D</td></td<> | Water
Mustang
0
0
1000
ml | r
B
D
D | | Analytical Instrument | Mustang
0
0
1000
ml | g
D
D
D | | % Moisture 0 0 0 % Lipid 0 0 0 Sample Size 1048 1000 1000 Sample Unit-Basis ml ml ml ml Units ng/L ng/L ng/L ng/L Naphthalenes U ng/L ng/L 3400 C1-Naphthalenes U U U U C2-Naphthalenes U U U U C3-Naphthalenes U U U U C3-Pilorenes U U U U U U U U U U U U U U <td>0
0
1000
ml</td> <td>)
)
)</td> | 0
0
1000
ml |)
)
) | | Sample Size 1048 1000 | 0
1000
ml |)
)
 | | Sample Size 1048 1000 1000 Sample Unit-Basis ml ml ml ml Units ng/L ng/L ng/L Naphthalenes U ng/L 3400 C1-Naphthalenes U U U C2-Naphthalenes U U U U C3-Naphthalenes U U U U U C4-Naphthalenes U < | 1000
ml |) | | Sample Units Samp | ml | ı | | Units ng/L ng/L ng/L Naphthalene U U U U C1-Naphthalenes U U U U C2-Naphthalenes U U U U C3-Naphthalenes U U U U Fluorenes U U U U U Fluorenes U </td <td>ml</td> <td>ı</td> | ml | ı | | Units ng/L ng/L ng/L Naphthalenes U </td <td></td> <td></td> | | | | Naphthalene U <td< td=""><td></td><td>_</td></td<> | | _ | | C2-Naphthalenes U | | | | C2-Naphthalenes U | 3420 |) | | C3-Naphthalenes U | | U | | C4-Naphthalenes U U 3920 Fluorene U U U C1-Fluorenes U U U C2-Fluorenes U U U Dibenzothiophenes U U U C1-Dibenzothiophenes U U U C1-Dibenzothiophenes U U U C2-Dibenzothiophenes U U U C3- Dibenzothiophenes U U U C1-Phenanthrenes U U U U C1-Phenanthrenes U U U U C3-Phenanthrenes U U U U C4-Phenanthrenes U U U U C4-Phenanthrenes U U U U C4-Phenanthrenes U <td></td> <td>U</td> | | U | | Fluorene | | U | | C1-Fluorenes U <t< td=""><td></td><td>U</td></t<> | | U | | C2-Fluorenes U U U C3-Fluorenes U U U Dibenzothiophene U U U C1-Dibenzothiophenes U U U C2-Dibenzothiophenes U U U C3-Dibenzothiophenes U U U Phenanthrene U U U C1-Phenanthrenes U U U C1-Phenanthrenes U U U C3-Phenanthrenes U U U C4-Phenanthrenes U U U U | 3890 | j | | C3- Fluorenes | | U | | Dibenzothiophene U U U C1-Dibenzothiophenes U U U C2-Dibenzothiophenes U U U C3-Dibenzothiophenes U U U C3-Dibenzothiophenes U U U Phenanthrene U U U C1-Phenanthrenes U U U C2-Phenanthrenes U U U C3-Phenanthrenes U U U C4-Phenanthrenes C1-Pyrenes U U U C2-Pyrenes U | | U | | C1-Dibenzothiophenes U U U C2-Dibenzothiophenes U U U C3- Dibenzothiophenes U U U Phenanthrene U U U U C1-Phenanthrenes U U U U C2-Phenanthrenes U U U U C3-Phenanthrenes U U U U C4-Phenanthrenes U U U U Anthracene U U U U Fluoranthene U U U 4070 Fluoranthene U U U 3690 Pyrene U U U U C1- Pyrenes U U U U C2- Pyrenes U U U U C3- Pyrenes U U U U C4- Pyrenes U U U U C4- Pyrenes U U U U C4- Pyrenes U U U <td< td=""><td></td><td>Ū</td></td<> | | Ū | | C2-Dibenzothiophenes U U U C3- Dibenzothiophenes U U U Phenanthrene U U U 3570 C1-Phenanthrenes U U U U U C2-Phenanthrenes U </td <td></td> <td>Ū</td> | | Ū | | C3- Dibenzothiophenes U U U U 3570 Phenanthrene U | | Ū | | Phenanthrene U U 3570 C1-Phenanthrenes U U U C2-Phenanthrenes U U U C3-Phenanthrenes U U U C4-Phenanthrenes C1-Phenanthrenes U U U U C3-Pyrenes U U U U C4-Pyrenes U U U U C3-Pyrenes U U U <td></td> <td>Ū</td> | | Ū | | C1-Phenanthrenes U | | Ū | | C1-Phenanthrenes U U U C2-Phenanthrenes U U U C3-Phenanthrenes U U U
C4-Phenanthrenes U U U Anthracene U U 4070 Fluoranthene U U 3690 Pyrene U U 3650 C1- Pyrenes U U U C2- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U C4- Pyrenes U U U C4- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U C4- Pyrenes U U U C3- Rypthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U U C-3 Naphthobenzothiophenes U U U | 3600 | | | C2-Phenanthrenes U U U C3-Phenanthrenes U U U C4-Phenanthrenes U U U Anthracene U U 4070 Fluoranthene U U 3690 Pyrene U U 3650 C1- Pyrenes U U U C2- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U C4- Pyrenes U U U Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U Benzo (a) Anthracene U U U | | U | | C3-Phenanthrenes U U U C4-Phenanthrenes U U U Anthracene U U U 4070 Fluoranthene U U 3690 U 9690 U 0 | | Ŭ | | C4-Phenanthrenes U U U 4070 Anthracene U U 4070 Fluoranthene U U 3690 Pyrene U U 3650 C1- Pyrenes U U U C2- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U C-1 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U C-4 Naphthobenzothiophenes U U U | | Ŭ | | Anthracene U U 4070 Fluoranthene U U 3690 Pyrene U U 3650 C1- Pyrenes U U U C2- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U C4- Pyrenes U U U C1- Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U | | Ŭ | | Fluoranthene U U 3690 Pyrene U U 3650 C1- Pyrenes U U U C2- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U C4- Pyrenes U U U Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U Benzo (a) Anthracene U U U 3570 | 4190 | • | | Pyrene U U 3650 C1- Pyrenes U U U C2- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U Benzo (a) Anthracene U U 3570 | 3540 | | | C1- Pyrenes U U U C2- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U Benzo (a) Anthracene U U U | 3570 | | | C2- Pyrenes U U U C3- Pyrenes U U U C4- Pyrenes U U U Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U Benzo (a) Anthracene U U 3570 | 00.0 | U | | C3- Pyrenes U U U C4- Pyrenes U U U Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U Benzo (a) Anthracene U U 3570 | | Ü | | C4- Pyrenes U U U Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U Benzo (a) Anthracene U U 3570 | | Ü | | Naphthobenzothiophene U U U C-1 Naphthobenzothiophenes U U U C-2 Naphthobenzothiophenes U U U C-3 Naphthobenzothiophenes U U U Benzo (a) Anthracene U U 3570 | | Ŭ | | C-1 Naphthobenzothiophenes U 3570 U 3570 U < | | Ü | | C-2 Naphthobenzothiophenes U U U U U U U U U U U U 3570 | | Ŭ | | C-3 Naphthobenzothiophenes U U U Ü Benzo (a) Anthracene U U 3570 | | Ü | | Benzo (a) Anthracene U U 3570 | | Ŭ | | | 3530 | • | | Chrysene U U 4230 | 4220 | | | C1- Chrysenes U U U | | U | | C2- Chrysenes U Ü Ü | | Ü | | C3- Chrysenes U U Ü | | Ŭ | | C4- Chrysenes U Ü Ü | | Ü | | Benzo (b) Fluoranthene U Ü 3680 | 3490 | • | | Benzo (k) Fluoranthene U U 4290 | 4310 | | | Benzo (e) Pyrene U U U | | U | | Benzo (a) Pyrene U U 3400 | 3390 | ~ | | Perylene 0.455 J 0.295 J 0.334 J | | U | | Indeno (1,2,3 - cd) Pyrene U U 2050 | 1880 | 5 | | Dibenzo (a,h) anthracene U U 2540 | 2430 | | | Dane (a.b.)) and the | 1700 | | | Total Aromatics 0.839 0.000 0 0 1790 47900 | 3 / (1)(1) | | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | rioject rame. | St. Croix Spin | | | | | | | | |------------------------|----------------|-----------|-------|---------|-------|---------|-------|---------| | Client ID | 35238 | 28-001 PS | 15290 | 9 BLANK | 1529 | 910 LCS | 1529: | I1 LCSD | | RCAT ID | 2010 | 355-23 | 2010 | 355-24 | 2010 | 355-25 | 2010 | 355-26 | | Sample Matrix | W | ater ater | W | ater . | W | /ater | | ater | | Analytical Instrument | Mu | stang | Mu | stang | | istang | | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 048 | 1 | 000 | 1 | 000 | | 000 | | Sample Unit-Basis | | ml | 1 | ml | | ml | | nl | | Units | u | g/L | u | g/L | u | g/L | | z/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.954 | 0.017 | 1.000 | 0.017 | 1.000 | 0.017 | 1.000 | | nC-11 Undecane | 0.012 | 0.954 | 0.013 | 1.000 | 0.013 | 1.000 | 0.013 | 1.000 | | nC-12 Dodecane | 0.014 | 0.954 | 0.015 | 1.000 | 0.015 | 1.000 | 0.015 | 1.000 | | nC-13 Tridecane | 0.011 | 0.954 | 0.011 | 1.000 | 0.011 | 1.000 | 0.011 | 1.000 | | nC-14 Tetradecane | 0.026 | 0.954 | 0.027 | 1.000 | 0.027 | 1.000 | 0.027 | 1.000 | | nC-15 Pentadecane | 0.023 | 0.954 | 0.024 | 1.000 | 0.024 | 1.000 | 0.024 | 1.000 | | nC-16 Hexadecane | 0.021 | 0.954 | 0.022 | 1.000 | 0.022 | 1.000 | 0.022 | 1.000 | | nC-17 Heptadecane | 0.046 | 0.954 | 0.048 | 1.000 | 0.048 | 1.000 | 0.048 | 1.000 | | Pristane | 0.044 | 0.954 | 0.046 | 1.000 | 0.046 | 1.000 | 0.046 | 1.000 | | nC-18 Octadecane | 0.067 | 0.954 | 0.070 | 1.000 | 0.070 | 1.000 | 0.070 | 1.000 | | Phytane | 0.069 | 0.954 | 0.073 | 1.000 | 0.073 | 1.000 | 0.073 | 1.000 | | nC-19 Nonadecane | 0.038 | 0.954 | 0.039 | 1.000 | 0.039 | 1.000 | 0.039 | 1.000 | | nC-20 Eicosane | 0.040 | 0.954 | 0.041 | 1.000 | 0.041 | 1.000 | 0.041 | 1.000 | | nC-21 Heneicosane | 0.033 | 0.954 | 0.034 | 1.000 | 0.034 | 1.000 | 0.034 | 1.000 | | nC-22 Docosane | 0.066 | 0.954 | 0.070 | 1.000 | 0.070 | 1.000 | 0.070 | 1.000 | | nC-23 Tricosane | 0.037 | 0.954 | 0.039 | 1.000 | 0.039 | 1.000 | 0.039 | 1.000 | | nC-24 Tetracosane | 0.059 | 0.954 | 0.062 | 1.000 | 0.062 | 1.000 | 0.062 | 1.000 | | nC-25 Pentacosane | 0.186 | 0.954 | 0.195 | 1.000 | 0.195 | 1.000 | 0.195 | 1.000 | | nC-26 Hexacosane | 0.157 | 0.954 | 0.165 | 1.000 | 0.165 | 1.000 | 0.165 | 1.000 | | nC-27 Heptacosane | 0.124 | 0.954 | 0.130 | 1.000 | 0.130 | 1.000 | 0.130 | 1.000 | | nC-28 Octacosane | 0.199 | 0.954 | 0.208 | 1.000 | 0.208 | 1.000 | 0.208 | 1.000 | | nC-29 Nonacosane | 0.150 | 0.954 | 0.157 | 1.000 | 0.157 | 1.000 | 0.157 | 1.000 | | nC-30 Triacontane | 0.083 | 0.954 | 0.087 | 1.000 | 0.087 | 1.000 | 0.087 | 1.000 | | nC-31 Hentriacontane | 0.084 | 0.954 | 0.088 | 1.000 | 0.088 | 1.000 | 0.088 | 1.000 | | nC-32 Dotriacontane | 0.048 | 0.954 | 0.051 | 1.000 | 0.051 | 1.000 | 0.051 | 1.000 | | nC-33 Tritriacontane | 0.071 | 0.954 | 0.074 | 1.000 | 0.074 | 1.000 | 0.074 | 1.000 | | nC-34 Tetratriacontane | 0.069 | 0.954 | 0.073 | 1.000 | 0.073 | 1.000 | 0.073 | 1.000 | | nC-35 Pentatriacontane | 0.034 | 0.954 | 0.036 | 1.000 | 0.036 | 1.000 | 0.036 | 1.000 | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name. | St. Croix Spin | | | | | | | | |----------------------------|----------------|-----------|--------------|----------------|----------------|----------------|----------------|----------------| | Client ID | 35238 | 28-001 PS | 15290 | 9 BLANK | 1529 | 910 LCS | 15291 | I1 LCSD | | RCAT ID | 2010 |)355-23 | 2010 | 355-24 | 2010 | 355-25 | 2010 | 355-26 | | Sample Matrix | \٨. | /ater | | 'ater | | ater | | | | • | | | | | | | | ater | | Analytical Instrument | Mu | istang | Mu | stang | Mu | stang | Mu | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 048 | 1 | 000 | 1 | 000 | | 000 | | Sample Unit-Basis | | ml | | m! | | ml | | | | Units | | r
ig/L | | g/L | | | | nl | | Omes | MDL | RQL | | | | g/L | | g/L | | Naphthalene | 0.214 | 4.762 | MDL
0.214 | RQL
4.762 | MDL | RQL | MDL | RQL | | C1-Naphthalenes | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | C2-Naphthalenes | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | C3-Naphthalenes | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | C4-Naphthalenes | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | Fluorene | 0.490 | 4.762 | 0.490 | | 0.214 | 4.762 | 0.214 | 4.762 | | C1-Fluorenes | 0.490 | 4.762 | 0.490 | 4.762
4.762 | 0.490 | 4.762 | 0.490 | 4.762 | | C2-Fluorenes | 0.490 | 4.762 | 0.490 | 4.762 | 0.490 | 4.762 | 0.490 | 4.762 | | C3- Fluorenes | 0.490 | 4.762 | 0.490 | 4.762 | 0.490
0.490
 4.762 | 0.490 | 4.762 | | Dibenzothiophene | 0.627 | 4.762 | 0.627 | | | 4.762 | 0.490 | 4.762 | | C1-Dibenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762
4.762 | 0.627
0.627 | 4.762 | 0.627 | 4.762 | | C2-Dibenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | C3- Dibenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | Phenanthrene | 0.365 | 4.762 | 0.365 | 4.762 | | 4.762 | 0.627 | 4.762 | | C1-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365
0.365 | 4.762 | 0.365 | 4.762 | | C2-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | | 4.762 | 0.365 | 4.762 | | C3-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365
0.365 | 4.762
4.762 | 0.365
0.365 | 4.762 | | C4-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | 4.762 | | Anthracene | 0.379 | 4.762 | 0.379 | 4.762 | 0.379 | 4.762 | 0.365
0.379 | 4.762 | | Fluoranthene | 0.650 | 4.762 | 0.650 | 4.762 | 0.650 | 4.762 | 0.650 | 4.762
4.762 | | Pyrene | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | 0.030 | 4.762 | | C1- Pyrenes | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | | C2- Pyrenes | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | | C3- Pyrenes | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | | C4- Pyrenes | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | | Naphthobenzothiophene | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | C-1 Naphthobenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | C-2 Naphthobenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | C-3 Naphthobenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | Benzo (a) Anthracene | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | Chrysene | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | C1- Chrysenes | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | C2- Chrysenes | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | C3- Chrysenes | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | C4- Chrysenes | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | Benzo (b) Fluoranthene | 0.715 | 4.762 | 0.715 | 4.762 | 0.715 | 4.762 | 0.715 | 4.762 | | Benzo (k) Fluoranthene | 0.672 | 4.762 | 0.672 | 4.762 | 0.672 | 4.762 | 0.672 | 4.762 | | Benzo (e) Pyrene | 0.961 | 4.762 | 0.961 | 4.762 | 0.961 | 4.762 | 0.961 | 4.762 | | Benzo (a) Pyrene | 0.803 | 4.762 | 0.803 | 4.762 | 0.803 | 4.762 | 0.803 | 4.762 | | Perylene | 0.255 | 4.762 | 0.255 | 4.762 | 0.255 | 4.762 | 0.255 | 4.762 | | Indeno (1,2,3 - cd) Pyrene | 1.866 | 4.762 | 1.866 | 4.762 | 1.866 | 4.762 | 1.866 | 4.762 | | Dibenzo (a,h) anthracene | 1.629 | 4.762 | 1.629 | 4.762 | 1.629 | 4.762 | 1.629 | 4.762 | | Benzo (g,h,i) perylene | 2.101 | 4.762 | 2.101 | 4.762 | 2.101 | 4.762 | 2.101 | 4.762 | | | | | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Client ID | 3523829-001 PS | 3523829-002 PS | 3523830-001 PS | 3523831-001 PS | |------------------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010355-27 | 2010355-28 | 2010355-29 | 2010355-30 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1045 | 1046 | 1044 | 1032 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | U | | nC-11 Undecane | U | υ | U | U | | nC-12 Dodecane | U | U | U | U | | nC-13 Tridecane | U | U | U | U | | nC-14 Tetradecane | U | U | U | U | | nC-15 Pentadecane | Ù | U | U | U | | nC-16 Hexadecane | U | 0.034 J | 0.024 J | U | | nC-17 Heptadecane | U | U | U | U | | Pristane | U | U | U | U | | nC-18 Octadecane | บ | U | U | U | | Phytane | U | U | U | U | | nC-19 Nonadecane | U | U | U | U | | nC-20 Eicosane | U | U | U | U | | nC-21 Heneicosane | U | U | U | U | | nC-22 Docosane | U | U | U | U | | nC-23 Tricosane | U | U | U | 0.110 J | | nC-24 Tetracosane | U | 0.115 J | U | 0.175 J | | nC-25 Pentacosane | U | U | U | 0.688 J | | nC-26 Hexacosane | U | U | U | 0.424 J | | nC-27 Heptacosane | U | U | U | 0.789 J | | nC-28 Octacosane | υ | U | U | 0.428 J | | nC-29 Nonacosane | U | U | U | 0.978 | | nC-30 Triacontane | U | U | U | 0.538 J | | nC-31 Hentriacontane | U | U | U | 1.17 | | nC-32 Dotriacontane | U | U | U | 0.310 J | | nC-33 Tritriacontane | U | U | U | 0.280 J | | nC-34 Tetratriacontane | U | U | U | 0.076 J | | nC-35 Pentatriacontane | U | U | U | 0.067 J | | Total Alkanes | 0.000 | 0.149 | 0.024 | 6.04 | | Surrogate Recovery (%) | - | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name. | St. Croix Spili | | | | |----------------------------|-----------------|----------------|----------------|----------------| | Client ID | 3523829-001 PS | 3523829-002 PS | 3523830-001 PS | 3523831-001 PS | | RCAT ID | 2010355-27 | 2010355-28 | 2010355-29 | 2010355-30 | | Sample Matrix | Water | Water | Water | Water | | | | | | | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | 0.000 | 0 | 0 | 0 | | Sample Size | 1045 | 1046 | 1044 | 1032 | | Sample Unit-Basis | ml | mi | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | | | | | | | Naphthalene | U | U | U | U | | C1-Naphthalenes | U | U | U | U | | C2-Naphthalenes | U | U | U | U | | C3-Naphthalenes | U | U | U | U | | C4-Naphthalenes | U | U | U | U | | Fluorene | U | U | U | U | | C1-Fluorenes | U | U | U | U | | C2-Fluorenes | U | U | U | U | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene | U | U | U | U | | C1-Dibenzothiophenes | U | U | U | U | | C2-Dibenzothiophenes | U | U | U | U | | C3- Dibenzothiophenes | Ū | U | U | U | | Phenanthrene | Ū | Ū | Ü | U | | C1-Phenanthrenes | Ū | Ū | Ū | Ū | | C2-Phenanthrenes | Ü | Ŭ | Ü | Ũ | | C3-Phenanthrenes | Ü | Ü | Ü | Ü | | C4-Phenanthrenes | Ü | Ü | ŭ | Ü | | Anthracene | Ü | Ü | ŭ | Ũ | | Fluoranthene | Ü | ŭ | Ü | Ũ | | Pyrene | Ü | Ü | Ü | Ŭ | | C1- Pyrenes | Ü | Ü | Ü | Ü | | • | Ü | U | Ŭ | U | | C2- Pyrenes | Ü | U | Ü | U | | C3- Pyrenes | Ü | U | Ü | Ü | | C4- Pyrenes | Ü | U | Ü | U | | Naphthobenzothiophene | U | U | U | U | | C-1 Naphthobenzothiophenes | U | U | U | U | | C-2 Naphthobenzothiophenes | | U | U | U | | C-3 Naphthobenzothiophenes | U | | | U | | Benzo (a) Anthracene | U | U | U | | | Chrysene | U | U | Ü | U | | C1- Chrysenes | U | U | U | U | | C2- Chrysenes | U | U | U | U | | C3- Chrysenes | U | U | U | U | | C4- Chrysenes | U | U | U | U | | Benzo (b) Fluoranthene | U | U | U | U | | Benzo (k) Fluoranthene | U | U | U | U | | Benzo (e) Pyrene | U | U | U | U | | Benzo (a) Pyrene | U | U | U | U | | Perylene | U | U | U | U | | Indeno (1,2,3 - cd) Pyrene | U | U | U | U | | Dibenzo (a,h) anthracene | U | U | U | U | | Benzo (g,h,i) perylene | U | U | U | U | | Total Aromatics | 0.000 | 0.000 | 0.000 | 0.000 | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | | | | |------------------------|-----------------|-------|--------|----------------|-------|----------------|-------|----------------|--| | Client ID | 3523829-001 PS | | 352382 | 3523829-002 PS | | 3523830-001 PS | | 3523831-001 PS | | | RCAT ID | 2010355-27 | | 2010 | 2010355-28 | | 2010355-29 | | 2010355-30 | | | Sample Matrix | w | ater | W | ater | w | ater | w | ater | | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | Mu | stang | | | % Moisture | | 0 | | 0 | | 0 | | 0 | | | % Lipid | | 0 | | 0 | 0 | | 0 | | | | Sample Size | 10 | 045 | 10 | 046 | 10 | 044 | 1032 | | | | Sample Unit-Basis | ſ | nl | r | ml | | ml | ı | nl | | | Units | u | g/L | u | g/L | u | g/L | u, | g/L | | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | | nC-10 Decane | 0.016 | 0.957 | 0.016 | 0.956 | 0.016 | 0.958 | 0.016 | 0.969 | | | nC-11 Undecane | 0.012 | 0.952 | 0.012 | 0.956 | 0.012 | 0.958 | 0.012 | 0.969 | | | nC-12 Dodecane | 0.014 | 0.952 | 0.014 | 0.956 | 0.014 | 0.958 | 0.014 | 0.969 | | | nC-13 Tridecane | 0.011 | 0.952 | 0.011 | 0.956 | 0.011 | 0.958 | 0.011 | 0.969 | | | nC-14 Tetradecane | 0.026 | 0.952 | 0.026 | 0.956 | 0.026 | 0.958 | 0.026 | 0.969 | | | nC-15 Pentadecane | 0.023 | 0.952 | 0.023 | 0.956 | 0.023 | 0.958 | 0.023 | 0.969 | | | nC-16 Hexadecane | 0.021 | 0.952 | 0.021 | 0.956 | 0.021 | 0.958 | 0.022 | 0.969 | | | nC-17 Heptadecane | 0.046 | 0.952 | 0.046 | 0.956 | 0.046 | 0.958 | 0.046 | 0.969 | | | Pristane | 0.044 | 0.952 | 0.044 | 0.956 | 0.044 | 0.958 | 0.045 | 0.969 | | | nC-18 Octadecane | 0.067 | 0.952 | 0.067 | 0.956 | 0.067 | 0.958 | 0.068 | 0.969 | | | Phytane | 0.069 | 0.952 | 0.069 | 0.956 | 0.070 | 0.958 | 0.070 | 0.969 | | | nC-19 Nonadecane | 0.038 | 0.952 | 0.038 | 0.956 | 0.038 | 0.958 | 0.038 | 0.969 | | | nC-20 Eicosane | 0.039 | 0.952 | 0.040 | 0.956 | 0.040 | 0.958 | 0.040 | 0.969 | | | nC-21 Heneicosane | 0.033 | 0.952 | 0.033 | 0.956 | 0.033 | 0.958 | 0.033 | 0.969 | | | nC-22 Docosane | 0.066 | 0.952 | 0.066 | 0.956 | 0.067 | 0.958 | 0.067 | 0.969 | | | nC-23 Tricosane | 0.037 | 0.952 | 0.037 | 0.956 | 0.037 | 0.958 | 0.038 | 0.969 | | | nC-24 Tetracosane | 0.059 | 0.952 | 0.059 | 0.956 | 0.059 | 0.958 | 0.060 | 0.969 | | | nC-25 Pentacosane | 0.186 | 0.952 | 0.186 | 0.956 | 0.187 | 0.958 | 0.189 | 0.969 | | | nC-26 Hexacosane | 0.157 | 0.952 | 0.158 | 0.956 | 0.158 | 0.958
| 0.160 | 0.969 | | | nC-27 Heptacosane | 0.124 | 0.952 | 0.125 | 0.956 | 0.125 | 0.958 | 0.126 | 0.969 | | | nC-28 Octacosane | 0.199 | 0.952 | 0.199 | 0.956 | 0.200 | 0.958 | 0.202 | 0.969 | | | nC-29 Nonacosane | 0.150 | 0.952 | 0.150 | 0.956 | 0.150 | 0.958 | 0.152 | 0.969 | | | nC-30 Triacontane | 0.083 | 0.952 | 0.083 | 0.956 | 0.083 | 0.958 | 0.084 | 0.969 | | | nC-31 Hentriacontane | 0.084 | 0.952 | 0.084 | 0.956 | 0.085 | 0.958 | 0.085 | 0.969 | | | nC-32 Dotriacontane | 0.048 | 0.952 | 0.048 | 0.956 | 0.048 | 0.958 | 0.049 | 0.969 | | | nC-33 Tritriacontane | 0.070 | 0.952 | 0.071 | 0.956 | 0.071 | 0.958 | 0.072 | 0.969 | | | nC-34 Tetratriacontane | 0.069 | 0.952 | 0.069 | 0.956 | 0.069 | 0.958 | 0.070 | 0.969 | | | nC-35 Pentatriacontane | 0.034 | 0.952 | 0.034 | 0.956 | 0.034 | 0.958 | 0.035 | 0.969 | | ### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | | | | |----------------------------|-----------------|----------------|--------|------------|--------|------------|--------|------------|--| | Client ID | 352382 | 9-001 PS | 352382 | 9-002 PS | 352383 | 30-001 PS | 352383 | 1-001 PS | | | RCAT ID | 2010355-27 | | 2010 | 2010355-28 | | 2010355-29 | | 2010355-30 | | | Sample Matrix | Water | | w | ater | w | ater | | ater | | | Analytical Instrument | Mustang | | | stang | | | | | | | · | | • | | - | | stang | | stang | | | % Moisture | | 0 | | 0 | | 0 | | 0 | | | % Lipid | | 0 | | 0 | | 0 | | 0 | | | Sample Size | 10 | 045 | 10 | 046 | 1044 | | 1032 | | | | Sample Unit-Basis | | ml | , | ml | | mi | ml | | | | Units | | g/L | | g/L | | g/L | |
₹/L | | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | | Naphthalene | 0.215 | 4.785 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | | | C1-Naphthalenes | 0.215 | 4.785 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | | | C2-Naphthalenes | 0.215 | 4.785 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | | | C3-Naphthalenes | 0.215 | 4.785 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | | | C4-Naphthalenes | 0.215 | 4.785 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | | | Fluorene | 0.492 | 4.785 | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | | | C1-Fluorenes | 0.492 | 4.785 | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | | | C2-Fluorenes | 0.492 | 4.785 | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | | | | C3- Fluorenes | 0.492 | 4.785 | 0.492 | 4.780 | 0.492 | 4.780 | | 4.780 | | | Dibenzothiophene | 0.630 | 4.785 | 0.630 | | | | 0.492 | 4.780 | | | C1-Dibenzothiophenes | 0.630 | 4.785 | | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | | | | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C2-Dibenzothiophenes | 0.630 | 4.785 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C3- Dibenzothiophenes | 0.630 | 4.785 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | Phenanthrene | 0.366 | 4.785 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | C1-Phenanthrenes | 0.366 | 4.785 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | C2-Phenanthrenes | 0.366 | 4.785 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | C3-Phenanthrenes | 0.366 | 4.785 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | C4-Phenanthrenes | 0.366 | 4.785 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | Anthracene | 0.381 | 4.785 | 0.381 | 4.780 | 0.381 | 4.780 | 0.381 | 4.780 | | | Fluoranthene | 0.653 | 4.785 | 0.653 | 4.780 | 0.653 | 4.780 | 0.653 | 4.780 | | | Pyrene | 0.774 | 4.785 | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780 | | | C1- Pyrenes | 0.774 | 4.785 | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780 | | | C2- Pyrenes | 0.774 | 4.785 | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780 | | | C3- Pyrenes | 0.774 | 4.785 | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780 | | | C4- Pyrenes | 0.774 | 4.785 | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780 | | | Naphthobenzothiophene | 0.630 | 4.785 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C-1 Naphthobenzothiophenes | 0.630 | 4.785 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C-2 Naphthobenzothiophenes | 0.630 | 4.785 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C-3 Naphthobenzothiophenes | 0.630 | 4.785 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | Benzo (a) Anthracene | 1.051 | 4.785 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | Chrysene | 1.051 | 4.785 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | C1- Chrysenes | 1.051 | 4.785 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | C2- Chrysenes | 1,051 | 4.785 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | C3- Chrysenes | 1.051 | 4.785 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | C4- Chrysenes | 1.051 | 4.785 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | Benzo (b) Fluoranthene | 0.719 | 4.785 | 0.718 | 4.780 | 0.718 | 4.780 | 0.718 | 4.780 | | | Benzo (k) Fluoranthene | 0.675 | 4.785 | 0.675 | 4.780 | 0.675 | 4.780 | 0.716 | 4.780 | | | Benzo (e) Pyrene | 0.966 | 4.785 | 0.965 | 4.780 | 0.965 | 4.780 | 0.675 | | | | Benzo (a) Pyrene | 0.807 | 4.785 | | | | | | 4.780 | | | Perylene | 0.807 | 4.785
4.785 | 0.806 | 4.780 | 0.806 | 4.780 | 0.806 | 4.780 | | | • | | | 0.256 | 4.780 | 0.256 | 4.780 | 0.256 | 4.780 | | | Indeno (1,2,3 - cd) Pyrene | 1.875 | 4.785 | 1.874 | 4.780 | 1.874 | 4.780 | 1.874 | 4.780 | | | Dibenzo (a,h) anthracene | 1.637 | 4.785 | 1.635 | 4.780 | 1.635 | 4.780 | 1.635 | 4.780 | | | Benzo (g,h,i) perylene | 2.111 | 4.785 | 2.109 | 4.780 | 2.109 | 4.780 | 2.109 | 4.780 | | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 3523832-001 PS | 3523833-001 PS | 3523834-001 PS | 3523835-001 PS | |------------------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010355-31 | 2010355-32 | 2010355-33 | 2010355-34 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1050 | 1041 | 1050 | 913 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | 0 | | | | | nC-11 Undecane | U | U | U | U | | nC-12 Dodecane | U | U | U | U | | nC-13 Tridecane | U | U | U | U | | nC-14 Tetradecane | U | U | U | U | | nC-15 Pentadecane | U | U | U | U | | nC-16 Hexadecane | U | U
U | U | U | | nC-17 Heptadecane | U | | U | U | | Pristane | U | U | U | U | | nC-18 Octadecane | U | U | U | U | | Phytane | U | U
U | U | U | | nC-19 Nonadecane | U | U | U | U | | nC-20 Eicosane | U | U | U
U | U | | nC-21 Heneicosane | U | U | U | U | | nC-22 Docosane | Ü | U | U | U
U | | nC-23 Tricosane | Ü | U | U | U | | nC-24 Tetracosane | Ŭ | U | U | | | nC-25 Pentacosane | Ü | U | U | U
U | | nC-26 Hexacosane | U | Ü | U | U | | nC-27 Heptacosane | U | Ü | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | Ü | Ü | U | U | | nC-30 Triacontane | U | Ü | U | U | | nC-31 Hentriacontane | 0.139 J | Ü | U | U | | nC-32 Dotriacontane | U | Ü | U | U | | nC-33 Tritriacontane | Ü | Ŭ | U | U | | nC-34 Tetratriacontane | Ü | Ü | U | U | | nC-35 Pentatriacontane | U | Ŭ | U | U | | Total Alkanes | 0.139 | 0.000 | 0.000 | 0,000 | | Surrogate Recovery (%) | | · · · · · · · · · · · · · · · · · · · | | | |------------------------|---|---------------------------------------|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Client: | Hovensa | | | | |--|-----------------|----------------|----------------|----------------| | Project Name: | St. Croix Spill | | | | | Client ID | 3523832-001 PS | 3523833-001 PS | 3523834-001 PS | 3523835-001 PS | | RCAT ID | 2010355-31 | 2010355-32 | 2010355-33 | 2010355-34 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | 0 | 0 | 0 | 0 | | Sample Size | 1050 | 1041 | 1050 | | | Sample Unit-Basis | ml | ml | | 913 | | Units | ng/L | ng/L | ml
ng/L | ml
ng/L | | | | | 3.5 | | | Naphthalene | U | U | به د بر | T U | | C1-Naphthalenes
C2-Naphthalenes | U
U | U
U | / U | | | C3-Naphthalenes | Ü | U | Ü | U | | C4-Naphthalenes | Ü | Ŭ | Ü | Ü | | Fluorene | Ü | Ű | Ü | Ü | | C1-Fluorenes | Ú | Ū | Ü | Ű | | C2-Fluorenes | U | U | U | Ü | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene | U | U | U | U | | C1-Dibenzothiophenes | U | U | U | U | | C2-Dibenzothiophenes C3- Dibenzothiophenes | U
U | U | U | U | | Phenanthrene | Ü | U
V | U
U | U
U | | C1-Phenanthrenes | Ŭ | Ü | Ü | U | | C2-Phenanthrenes | Ü | Ü | Ü | Ü | | C3-Phenanthrenes | U | U | Ū | Ū | | C4-Phenanthrenes | U | υ | U | Ū | | Anthracene | U | U | U | U | | Fluoranthene | Ü | U | U | U | | Pyrene
C1 Byrones | U | U | U | U | | C1- Pyrenes
C2- Pyrenes | U | U
U | U | U | | C3- Pyrenes | Ü | U | U | U
U | | C4- Pyrenes | Ü | Ü | Ü | Ü | | Naphthobenzothiophene | Ū | Ũ | Ü | Ŭ | | C-1 Naphthobenzothiophenes | U | U | U | Ū | | C-2 Naphthobenzothiophenes | U | U | U | U | | C-3 Naphthobenzothiophenes | U | U | U | U | | Benzo (a) Anthracene
Chrysene | U | U | U | U | | C1- Chrysenes | U
U | U
U | U
U | U | | C2- Chrysenes | Ü | Ü | Ü | U
U | | C3- Chrysenes | Ü | Ü | Ŭ | Ü | | C4- Chrysenes | U | U | Ū | Ū | | Benzo (b) Fluoranthene | U | U | U | U | | Benzo (k) Fluoranthene | U | U | U | U | | Benzo (e) Pyrene | Ü | U | U | U | | Benzo (a) Pyrene
Perylene | U
U | U | U | U | | Indeno (1,2,3 - cd) Pyrene | Ü | U
U | U
U | U
U | | Dibenzo (a,h) anthracene | Ŭ | U | Ü | U | | Benzo (g,h,i) perylene | Ū | Ü | , Ŭ | Ŭ | | Total Aromatics | 0.000 | 0.000 | 0.986 | 0.000 | | | | | 3.54 | | | % Surrogate Recovery | | | | | | Phenanthrene d-10 | 0 | 0 | 0 | 0 | # Louisiana State
University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name. | at. Croix apili | | | | | | | | |------------------------|-----------------|-----------|-------|------------|-------|-----------|------------|-----------| | Client ID | 35238 | 32-001 PS | 35238 | 33-001 PS | 35238 | 34-001 PS | 352383 | 35-001 PS | | RCAT ID | 2010355-31 | | 2010 | 2010355-32 | | 355-33 | 2010355-34 | | | Sample Matríx | W | /ater | W | /ater | w | ater ater | w | ater | | Analytical Instrument | Mu | istang | Mu | stang | Mu | stang | Mu | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipíd | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 050 | 1 | 041 | 1 | 050 | 9 | 13 | | Sample Unit-Basis | | ml | | ml | | ml | r | ml | | Units | u | ıg/L | u | g/L | u | g/L | | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.952 | 0.016 | 0.961 | 0.016 | 0.952 | 0.019 | 1.095 | | nC-11 Undecane | 0.012 | 0.952 | 0.012 | 0.961 | 0.012 | 0.952 | 0.014 | 1.095 | | nC-12 Dodecane | 0.014 | 0.952 | 0.014 | 0.961 | 0.014 | 0.952 | 0.016 | 1.095 | | nC-13 Tridecane | 0.011 | 0.952 | 0.011 | 0.961 | 0.011 | 0.952 | 0.012 | 1.095 | | nC-14 Tetradecane | 0.026 | 0.952 | 0.026 | 0.961 | 0.026 | 0.952 | 0.030 | 1.095 | | nC-15 Pentadecane | 0.023 | 0.952 | 0.023 | 0.961 | 0.023 | 0.952 | 0.026 | 1.095 | | nC-16 Hexadecane | 0.021 | 0.952 | 0.022 | 0.961 | 0.021 | 0.952 | 0.025 | 1.095 | | nC-17 Heptadecane | 0.046 | 0.952 | 0.046 | 0.961 | 0.046 | 0.952 | 0.053 | 1.095 | | Pristane | 0.044 | 0.952 | 0.045 | 0.961 | 0.044 | 0.952 | 0.051 | 1.095 | | nC-18 Octadecane | 0.067 | 0.952 | 0.068 | 0.961 | 0.067 | 0.952 | 0.077 | 1.095 | | Phytane | 0.069 | 0.952 | 0.070 | 0.961 | 0.069 | 0.952 | 0.079 | 1.095 | | nC-19 Nonadecane | 0.038 | 0.952 | 0.038 | 0.961 | 0.038 | 0.952 | 0.043 | 1.095 | | nC-20 Eicosane | 0.039 | 0.952 | 0.040 | 0.961 | 0.039 | 0.952 | 0.045 | 1.095 | | nC-21 Heneicosane | 0.033 | 0.952 | 0.033 | 0.961 | 0.033 | 0.952 | 0.038 | 1.095 | | nC-22 Docosane | 0.066 | 0.952 | 0.067 | 0.961 | 0.066 | 0.952 | 0.076 | 1.095 | | nC-23 Tricosane | 0.037 | 0.952 | 0.037 | 0.961 | 0.037 | 0.952 | 0.043 | 1.095 | | nC-24 Tetracosane | 0.059 | 0.952 | 0.059 | 0.961 | 0.059 | 0.952 | 0.067 | 1.095 | | nC-25 Pentacosane | 0.186 | 0.952 | 0.187 | 0.961 | 0.186 | 0.952 | 0.213 | 1.095 | | nC-26 Hexacosane | 0.157 | 0.952 | 0.158 | 0.961 | 0.157 | 0.952 | 0.181 | 1.095 | | nC-27 Heptacosane | 0.124 | 0.952 | 0.125 | 0.961 | 0.124 | 0.952 | 0.143 | 1.095 | | nC-28 Octacosane | 0.199 | 0.952 | 0.200 | 0.961 | 0.199 | 0.952 | 0.228 | 1.095 | | nC-29 Nonacosane | 0.150 | 0.952 | 0.151 | 0.961 | 0.150 | 0.952 | 0.172 | 1.095 | | nC-30 Triacontane | 0.083 | 0.952 | 0.083 | 0.961 | 0.083 | 0.952 | 0.095 | 1.095 | | nC-31 Hentriacontane | 0.084 | 0.952 | 0.085 | 0.961 | 0.084 | 0.952 | 0.097 | 1.095 | | nC-32 Dotriacontane | 0.048 | 0.952 | 0.049 | 0.961 | 0.048 | 0.952 | 0.055 | 1.095 | | nC-33 Tritriacontane | 0.070 | 0.952 | 0.071 | 0.961 | 0.070 | 0.952 | 0.081 | 1.095 | | nC-34 Tetratriacontane | 0.069 | 0.952 | 0.070 | 0.961 | 0.069 | 0.952 | 0.079 | 1.095 | | nC-35 Pentatriacontane | 0.034 | 0.952 | 0.034 | 0.961 | 0.034 | 0.952 | 0.039 | 1.095 | | | | | | | | | | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | | | | |--------------------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Client ID | 35238 | 32-001 PS | 35238 | 33-001 PS | 35238 | 34-001 PS | 352383 | 35-001 PS | | | RCAT ID | 2010355-31 | | 2010 | 2010355-32 | | 2010355-33 | | 2010355-34 | | | Sample Matrix | | ater | | /ater | | | | | | | · | | | | | | /ater | W | ater | | | Analytical Instrument | Mu | istang | Mu | istang | Mι | istang | Mu | stang | | | % Moisture | | 0 | | 0 | | 0 | | 0 | | | % Lipid | | 0 | | 0 | | 0 | | 0 | | | Sample Size | 1 | 050 | 1 | 041 | 1 | 050 | | 13 | | | Sample Unit-Basis | | ml | | mi | | mi | | nl | | | Units | | g/L | | ıg/L | | g/L | | | | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL n | g/L | | | Naphthalene | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | RQL | | | C1-Naphthalenes | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780
4.780 | | | C2-Naphthalenes | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | | | C3-Naphthalenes | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | | | C4-Naphthalenes | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | 0.215 | 4.780 | | | Fluorene | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | | | C1-Fluorenes | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | | | C2-Fluorenes | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | | | C3- Fluorenes | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | 0.492 | 4.780 | | | Dibenzothiophene | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C1-Dibenzothiophenes | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C2-Dibenzothiophenes | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C3- Dibenzothiophenes | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | Phenanthrene | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | C1-Phenanthrenes
C2-Phenanthrenes | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | C3-Phenanthrenes | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | C4-Phenanthrenes | 0.366
0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | Anthracene | 0.381 | 4.780
4.780 | 0.366 | 4.780 | 0.366 | 4.780 | 0.366 | 4.780 | | | Fluoranthene | 0.653 | 4.780 | 0.381
0.653 | 4.780 | 0.381 | 4.780 | 0.381 | 4.780 | | | Pyrene | 0.774 | 4.780 | 0.774 | 4.780
4.780 | 0.653 | 4.780 | 0.653 | 4.780 | | | C1- Pyrenes | 0.774 | 4.780 | 0.774 | 4.780 | 0.774
0.774 | 4.780 | 0.774 | 4.780 | | | C2- Pyrenes | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780 | | | C3- Pyrenes | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780
4.780 | 0.774 | 4.780 | | | C4- Pyrenes | 0.774 | 4.780 | 0.774 | 4.780 | 0.774 | 4.780 | 0.774
0.774 | 4.780
4.780 | | | Naphthobenzothiophene | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C-1 Naphthobenzothiophenes | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C-2 Naphthobenzothiophenes | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | C-3 Naphthobenzothiophenes | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | 0.630 | 4.780 | | | Benzo (a) Anthracene | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | Chrysene | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | C1- Chrysenes | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | C2- Chrysenes | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | C3- Chrysenes | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | C4- Chrysenes | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | 1.050 | 4.780 | | | Benzo (b) Fluoranthene | 0.718 | 4.780 | 0.718 | 4.780 | 0.718 | 4.780 | 0.718 | 4.780 | | | Benzo (k) Fluoranthene | 0.675 | 4.780 | 0.675 | 4.780 | 0.675 | 4.780 | 0.675 | 4.780 | | | Benzo (e) Pyrene
Benzo (a) Pyrene | 0.965 | 4.780 | 0.965 | 4.780 | 0.965 | 4.780 | 0.965 | 4.780 | | | Perylene | 0.806 | 4.780 | 0.806 | 4.780 | 0.806 | 4.780 | 0.806 | 4.780 | | | Indeno (1,2,3 - cd) Pyrene | 0.256
1.874 | 4.780 | 0.256 | 4.780 | 0.256 | 4.780 | 0.256 | 4.780 | | | Dibenzo (a,h) anthracene | 1.635 | 4.780
4.780 | 1.874
1.635 | 4.780 | 1.874 | 4.780 | 1.874 | 4.780 | | | Benzo (g,h,i) perylene | 2.109 | 4.780 | 2.109 | 4.780
4.780 | 1.635 | 4.780 | 1.635 | 4.780 | | | - (3//, Fo. J. 0/10 | 2.100 | 7.700 | 2.109 | 4.700 | 2.109 | 4.780 | 2.109 | 4.780 | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Client ID | 3523836-001 PS | 3523837-001 PS | 0.000 | 3523838-001 PS | |----------------------------|----------------|----------------|------------|----------------| | RCAT ID | 2010355-35 | 2010355-36 | Method BLK | 2010355-37 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | О | 0 | 0 | | % Lipid | | | | | | Sample Size | 1014 | 994 | 1000 | 1041 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | U | | nC-11 Undecane | U | U | U | U | | nC-12 Dodecane | U | U | U | U | | nC-13 Tridecane | U | U | U | U | | nC-14 Tetradecane | U | U | U | U | | nC-15 Pentadecane | U | U | U | U | | nC-16 Hexadecane | U | U | U | U | | nC-17 Heptadecane | U | U | U | U | | Pristane | U | U | U | U | | nC-18 Octadecane | U | U | U | U | | Phytane | U | U | U | U | | nC-19 Nonadecane | U | U | U | U | | nC-20 Eicosane | U | U | U | U | | nC-21 Heneicosane | U | U | υ | U | | nC-22 Docosane | υ | U | U | U | | nC-23 Tricosane | U | U | U | U | | nC-24 Tetracosane | U | U | U | U | | nC-25 Pentacosane | U | U | U | U | | nC-26 Hexacosane | U | U | U | U | | nC-27 He p tacosane | U | U | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | U | U | U | | nC-30 Triacontane | U | U | U | U | | nC-31 Hentriacontane | U | U | U | U | | nC-32 Dotriacontane | U | U | U | U | | nC-33 Tritriacontane | U | U | U | U | | nC-34 Tetratriacontane | U | U | U | U | | nC-35 Pentatriacontane | U | U | U | U | | Total Alkanes | 0.000 | 0.000 | 0.000 | 0.000 | | Surrogate Recovery (%) | | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | # Louisiana State University Department of Environmental Sciences Response & Chemical
Assessment Team | Client ID | 3523836-001 PS | 3523837-001 PS | 0 | 3523838-001 PS | |--|----------------|----------------|------------|----------------| | RCAT ID | 2010355-35 | 2010355-36 | Method BLK | 2010355-37 | | Sample Matrix | Water | Water | Water | | | Analytical Instrument | | | | Water | | • | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | 0.000 | 0 | 0 | 0 | | Sample Size | 1014 | 994 | 1000 | 1041 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Naphthalene | 0.307 U | U | U | U | | C1-Naphthalenes | Ü | Ü | Ü | Ü | | C2-Naphthalenes | Ŭ | Ü | ŭ | Ü | | C3-Naphthalenes | U | Ū | Ü | Ŭ | | C4-Naphthalenes | U | Ũ | Ŭ | ŭ | | Fluorene | U | Ü | Ü | Ü | | C1-Fluorenes | U | Û | Ü | Ü | | C2-Fluorenes | U | U | Ü | Ŭ | | C3- Fluorenes | U | U | Ū | Ü | | Dibenzothiophene | U | U | Ŭ | Ũ | | C1-Dibenzothiophenes | U | U | U | Ū | | C2-Dibenzothiophenes | U | U | Û | Ū | | C3- Dibenzothiophenes | U | U | U | Ū | | Phenanthrene | U | U | U | Ū | | C1-Phenanthrenes | U | U | U | Ů | | C2-Phenanthrenes | U | U | U | Ū | | C3-Phenanthrenes | U | U | U | U | | C4-Phenanthrenes | U | U | υ | U | | Anthracene | U | U | U | U | | Fluoranthene | U | U | U | U | | Pyrene | U | U | U | U | | C1- Pyrenes | U | U | U | U | | C2- Pyrenes | U | U | U | U | | C3- Pyrenes | U | U | U | U | | C4- Pyrenes | U | U | U | U | | Naphthobenzothiophene | U | U | U | U | | C-1 Naphthobenzothiophenes | ŭ | U | U | U | | C-2 Naphthobenzothiophenes | Ü | U | U | U | | C-3 Naphthobenzothiophenes
Benzo (a) Anthracene | U | U | U | U | | Chrysene | U
U | U | U | U | | C1- Chrysenes | Ü | U | U | U | | C2- Chrysenes | Ü | U
U | U | U | | C3- Chrysenes | Ü | U | U | U | | C4- Chrysenes | Ü | U | U
U | U | | Benzo (b) Fluoranthene | ŭ | ŭ | U | U | | Benzo (k) Fluoranthene | ŭ | Ü | U | U
U | | Benzo (e) Pyrene | ŭ | Ü | U | U | | Benzo (a) Pyrene | ŭ | ŭ | U | U | | Perylene | Ü | Ŭ | Ü | U | | Indeno (1,2,3 - cd) Pyrene | Ü | ŭ | U | Ü | | Dibenzo (a,h) anthracene | Ŭ | ŭ | Ŭ | U | | Benzo (g,h,i) perylene | Ŭ | ŭ | Ŭ | U | | Total Aromatics | 0.307 | 0.000 | 0.000 | 0.000 | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spili | | | | | | | | |------------------------|-----------------|-----------|--------|-----------|-------|---------|--------|-----------| | Client ID | 352383 | 86-001 PS | 352383 | 37-001 PS | 0. | .000 | 352383 | 38-001 PS | | RCAT ID | 2010 | 355-35 | 2010 | 355-36 | Meth | nod BŁK | 2010 | 355-37 | | Sample Matrix | w | ater | w | ater | w | ater | w | ater | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | Mu | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 014 | 9 | 94 | 1 | 000 | 10 | 041 | | Sample Unit-Basis | Í | ml | | mł | | ml | r | mi | | Units | u | g/L | u | g/L | u | g/L | uį | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.017 | 0.986 | 0.017 | 1.006 | 0.017 | 1.000 | 0.016 | 0.961 | | nC-11 Undecane | 0.012 | 0.952 | 0.013 | 1.006 | 0.013 | 1.000 | 0.012 | 0.961 | | nC-12 Dodecane | 0.014 | 0.952 | 0.015 | 1.006 | 0.015 | 1.000 | 0.014 | 0.961 | | nC-13 Tridecane | 0.011 | 0.952 | 0.011 | 1.006 | 0.011 | 1.000 | 0.011 | 0.961 | | nC-14 Tetradecane | 0.026 | 0.952 | 0.027 | 1.006 | 0.027 | 1.000 | 0.026 | 0.961 | | nC-15 Pentadecane | 0.023 | 0.952 | 0.024 | 1.006 | 0.024 | 1.000 | 0.023 | 0.961 | | nC-16 Hexadecane | 0.021 | 0.952 | 0.023 | 1.006 | 0.022 | 1.000 | 0.022 | 0.961 | | nC-17 Heptadecane | 0.046 | 0.952 | 0.048 | 1.006 | 0.048 | 1.000 | 0.046 | 0.961 | | Pristane | 0.044 | 0.952 | 0.047 | 1.006 | 0.046 | 1.000 | 0.045 | 0.961 | | nC-18 Octadecane | 0.067 | 0.952 | 0.071 | 1.006 | 0.070 | 1.000 | 0.068 | 0.961 | | Phytane | 0.069 | 0.952 | 0.073 | 1.006 | 0.073 | 1.000 | 0.070 | 0.961 | | nC-19 Nonadecane | 0.038 | 0.952 | 0.040 | 1.006 | 0.039 | 1.000 | 0.038 | 0.961 | | nC-20 Eicosane | 0.039 | 0.952 | 0.042 | 1.006 | 0.041 | 1.000 | 0.040 | 0.961 | | nC-21 Heneicosane | 0.033 | 0.952 | 0.035 | 1.006 | 0.034 | 1.000 | 0.033 | 0.961 | | nC-22 Docosane | 0.066 | 0.952 | 0.070 | 1.006 | 0.070 | 1.000 | 0.067 | 0.961 | | nC-23 Tricosane | 0.037 | 0.952 | 0.039 | 1.006 | 0.039 | 1.000 | 0.037 | 0.961 | | nC-24 Tetracosane | 0.059 | 0.952 | 0.062 | 1.006 | 0.062 | 1.000 | 0.059 | 0.961 | | nC-25 Pentacosane | 0.186 | 0.952 | 0.196 | 1.006 | 0.195 | 1.000 | 0.187 | 0.961 | | nC-26 Hexacosane | 0.157 | 0.952 | 0.166 | 1.006 | 0.165 | 1.000 | 0.158 | 0.961 | | nC-27 Heptacosane | 0.124 | 0.952 | 0.131 | 1.006 | 0.130 | 1.000 | 0.125 | 0.961 | | nC-28 Octacosane | 0.199 | 0.952 | 0.210 | 1.006 | 0.208 | 1.000 | 0.200 | 0.961 | | nC-29 Nonacosane | 0.150 | 0.952 | 0.158 | 1.006 | 0.157 | 1.000 | 0.151 | 0.961 | | nC-30 Triacontane | 0.083 | 0.952 | 0.087 | 1.006 | 0.087 | 1.000 | 0.083 | 0.961 | | nC-31 Hentriacontane | 0.084 | 0.952 | 0.089 | 1.006 | 0.088 | 1.000 | 0.085 | 0.961 | | nC-32 Dotriacontane | 0.048 | 0.952 | 0.051 | 1.006 | 0.051 | 1.000 | 0.049 | 0.961 | | nC-33 Tritriacontane | 0.070 | 0.952 | 0.074 | 1.006 | 0.074 | 1.000 | 0.071 | 0.961 | | nC-34 Tetratriacontane | 0.069 | 0.952 | 0.073 | 1.006 | 0.073 | 1.000 | 0.070 | 0.961 | | nC-35 Pentatriacontane | 0.034 | 0.952 | 0.036 | 1.006 | 0.036 | 1.000 | 0.034 | 0.961 | | | | | | | | | | 4.44. | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | | | |----------------------------|-----------------|----------|--------|----------|-------|----------------|----------------|----------------| | Client ID | 352383 | 6-001 PS | 352383 | 7-001 PS | | 0 | 352383 | 8-001 PS | | CHETTE | | | | | | | 332303 | 0 00113 | | RCAT ID | 2010 | 355-35 | 2010 | 355-36 | Meth | od BLK | 2010 | 355-37 | | Sample Matrix | w | ater | W | ater | W: | ater | w | ater | | Analytical Instrument | | stang | | stang | | stang | | stang | | , | | • | | - | | ū | | • | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 10 | 014 | 9 | 94 | 10 | 000 | 10 | 041 | | Sample Unit-Basis | ı | ml | г | nl | r | nl | r | nl | | Units | n | e/L | n | g/L | | g/L | |
g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | Naphthalene | 0.221 | 4.931 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | C1-Naphthalenes | 0.221 | 4.931 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | C2-Naphthalenes | 0.221 | 4.931 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | C3-Naphthalenes | 0.221 | 4.931 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | C4-Naphthalenes | 0.221 | 4.931 | 0.226 | 5.030 | 0.226 | 5,030 | 0.226 | 5.030 | | Fluorene | 0.507 | 4.931 | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | | C1-Fluorenes | 0.507 | 4.931 | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | | C2-Fluorenes | 0.507 | 4.931 | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | | C3- Fluorenes | 0.507 | 4.931 | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | | Dibenzothiophene | 0.650 | 4.931 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C1-Dibenzothiophenes | 0.650 | 4.931 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C2-Dibenzothiophenes | 0.650 | 4.931 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C3- Dibenzothiophenes | 0.650 | 4.931 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | Phenanthrene | 0.378 | 4.931 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | C1-Phenanthrenes | 0.378 | 4.931 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | C2-Phenanthrenes | 0.378 | 4.931 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | C3-Phenanthrenes | 0.378 | 4.931 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | C4-Phenanthrenes | 0.378 | 4.931 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | Anthracene | 0.393 | 4.931 | 0.400 | 5.030 | 0.400 | 5.030 | 0.400 | 5.030 | | Fluoranthene | 0.673 | 4.931 | 0.687 | 5.030 | 0.687 | 5.030 | 0.687 | 5.030 | | Pyrene | 0.798 | 4.931 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | | C1- Pyrenes | 0.798 | 4.931 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | | C2- Pyrenes | 0.798 | 4.931 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | | | C3- Pyrenes | 0.798 | 4.931 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030
5.030 | | C4- Pyrenes | 0.798 | 4.931 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | | Naphthobenzothiophene | 0.650 | 4.931 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C-1 Naphthobenzothiophenes | 0.650 | 4.931 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C-2 Naphthobenzothiophenes | 0.650 | 4.931 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C-3 Naphthobenzothiophenes | 0.650 | 4.931 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | Benzo (a) Anthracene | 1.083 | 4.931 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | Chrysene | 1.083 | 4.931 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | C1- Chrysenes | 1.083 | 4.931 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | C2- Chrysenes | 1.083 | 4.931 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | C3- Chrysenes | 1.083 | 4.931 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | C4- Chrysenes | 1.083 | 4.931 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | | | Benzo (b) Fluoranthene | 0.741 | 4.931 | 0.756 | 5.030 | 0.756 | 5.030 | 0.756 | 5.030
5.030 | | Benzo (k) Fluoranthene | 0.696 | 4.931 | 0.710 | 5.030 | 0.736 | 5.030 | 0.756 | 5.030 | | Benzo (e) Pyrene | 0.995 | 4.931 | 1.015 | 5.030 | 1.015 | 5.030 | 1.015 | 5.030 | | Benzo (a) Pyrene | 0.831 | 4.931 | 0.848 | 5.030 | 0.848 | 5.030 | 0.848 | 5.030 | | Perylene | 0.264 | 4.931 | 0.270 | 5.030 | 0.848 | 5.030 | | | | Indeno (1,2,3 - cd) Pyrene | 1.933 | 4.931 | 1.972 | 5.030 | 1.972 | | 0.270
 5.030 | | Dibenzo (a,h) anthracene | 1.687 | 4.931 | 1.721 | 5.030 | 1.721 | 5.030
5.030 | 1.972 | 5.030
5.030 | | Benzo (g,h,i) perylene | 2.175 | 4.931 | 2.219 | 5.030 | 2.219 | 5.030 | 1.721
2.219 | 5.030 | | Delize (g,n,i) peryiene | 2.175 | 7.001 | 2.213 | 5.050 | 2.213 | 3.030 | 2.219 | 5.030 | | | | | | | | | | | ## Louisiana State University **Department of Environmental Sciences** Response & Chemical Assessment Team Project Client: Project Name: St. Croix Spill | · | , | | | | |------------------------|----------------|----------------|----------------|----------------| | Client ID | 3523839-001 PS | 3523840-001 PS | 3523840-002 PS | 3523841-001 PS | | RCAT ID | 2010355-38 | 2010355-39 | 2010355-40 | 2010355-41 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1050 | 1034 | 1023 | 1053 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | U | | nC-11 Undecane | U | U | U | U | | nC-12 Dodecane | U | U | U | U | | nC-13 Tridecane | U | U | U | U | | nC-14 Tetradecane | U | U | U | U | | nC-15 Pentadecane | U | U | U | U | | nC-16 Hexadecane | U | U | U | U | | nC-17 Heptadecane | U | U | U | U | | Pristane | U | U | U | U | | nC-18 Octadecane | U | υ | U | U | | Phytane | U | U | U | U | | nC-19 Nonadecane | U | U | U | U | | nC-20 Eicosane | U | U | U | U | | nC-21 Heneicosane | U | U | U | U | | nC-22 Docosane | U | U | U | U | | nC-23 Tricosane | U | U | 0.044 J | U | | nC-24 Tetracosane | U | U | U | U | | nC-25 Pentacosane | U | U | U | U | | nC-26 Hexacosane | U | U | U | U | | nC-27 Heptacosane | 0.134 J | U | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | U | 0.177 J | U | | nC-30 Triacontane | U | U | U | U | | nC-31 Hentriacontane | U | U | 0.117 J | U | | nC-32 Dotriacontane | U | U | U | U | | nC-33 Tritriacontane | U | U | U | U | | nC-34 Tetratriacontane | U | U | U | U | | nC-35 Pentatriacontane | U | U | U | U | | Total Alkanes | 0.134 | 0.000 | 0.339 | 0.000 | | Surrogate Recovery (%) | | *************************************** | · · · · · · · · · · · · · · · · · · · | | |------------------------|---|---|---------------------------------------|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Client: | Hovensa | | | | |---|-----------------|----------------|----------------|----------------| | Project Name: | St. Croix Spill | | | | | Client ID | 3523839-001 PS | 3523840-001 PS | 3523840-002 PS | 3523841-001 PS | | RCAT ID | 2010355-38 | 2010355-39 | 2010355-40 | 2010355-41 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | 0 | 0 | 0 | 0 | | Sample Size | 1050 | 1034 | 1023 | 1053 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Naphthalene | U | U | U | U | | C1-Naphthalenes | U | U | U | U | | C2-Naphthalenes | U | U | U | U | | C3-Naphthalenes
C4-Naphthalenes | U
U | U
U | U
U | U
U | | Fluorene | Ü | U | Ü | U | | C1-Fluorenes | Ū | Ū | Ü | Ü | | C2-Fluorenes | U | U | U | Ū | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene
C1-Dibenzothiophenes | U
U | U
U | U | U | | C2-Dibenzothiophenes | Ü | Ü | U
U | U | | C3- Dibenzothiophenes | Ū | Ü | Ü | Ü | | Phenanthrene | U | U | U | Ū | | C1-Phenanthrenes | Ü | U | U | U | | C2-Phenanthrenes C3-Phenanthrenes | U
U | U
U | Ü | U | | C4-Phenanthrenes | Ü | Ŭ | U
U | U
U | | Anthracene | Ū | Ü | Ŭ | Ü | | Fluoranthene | U | U | U | Ū | | Pyrene | U | U | U | U | | C1- Pyrenes
C2- Pyrenes | U
U | U
U | U | U | | C3- Pyrenes | Ü | Ü | U
U | U
U | | C4- Pyrenes | Ŭ | Ü | Ü | Ü | | Naphthobenzothiophene | U | U | U | Ū | | C-1 Naphthobenzothiophenes | U | U | U | U | | C-2 Naphthobenzothiophenes C-3 Naphthobenzothiophenes | U
U | U
U | U | U | | Benzo (a) Anthracene | Ü | Ü | U | U
U | | Chrysene | U | Ū | Ü | Ü | | C1- Chrysenes | U | U | U | U | | C2- Chrysenes | U | U | U | U | | C3- Chrysenes
C4- Chrysenes | U
U | บ
บ | U
U | U | | Benzo (b) Fluoranthene | Ü | ŭ | Ü | U
U | | Benzo (k) Fluoranthene | Ū | Ū | Ü | Ü | | Benzo (e) Pyrene | U | U | U | U | | Benzo (a) Pyrene
Perylene | U | U | 1.61 J | U | | Indeno (1,2,3 - cd) Pyrene | U
U | U
U | U | U
U | | Dibenzo (a,h) anthracene | ŭ | Ü | ŭ | U | | Benzo (g,h,i) perylene | U | Ü | ∕ Ū | Ü | | Total Aromatics | 0.000 | 0.000 | 0,960 | 0.000 | | | | | 1.6 | | | % Surrogate Recovery | | | | | | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | | | |------------------------|-----------------|-----------|--------|-----------|--------|-----------|--------|----------| | Client ID | 352383 | 89-001 PS | 352384 | 10-001 PS | 352384 | 10-002 PS | 352384 | 1-001 PS | | RCAT ID | 2010 | 355-38 | 2010 | 355-39 | 2010 | 355-40 | 2010 | 355-41 | | Sample Matrix | W | ater | w | ater | w | ater | w | ater | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | Mu | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 050 | 10 | 034 | 1: | 023 | 10 | 053 | | Sample Unit-Basis | į | ml | | ml | 1 | mi | 1 | nl | | Units | u | g/L | u | g/L | u | g/L | u | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.952 | 0.016 | 0.967 | 0.017 | 0.978 | 0.016 | 0.950 | | nC-11 Undecane | 0.012 | 0.952 | 0.012 | 0.967 | 0.013 | 0.978 | 0.012 | 0.950 | | nC-12 Dodecane | 0.014 | 0.952 | 0.014 | 0.967 | 0.014 | 0.978 | 0.014 | 0.950 | | nC-13 Tridecane | 0.011 | 0.952 | 0.011 | 0.967 | 0.011 | 0.978 | 0.011 | 0.950 | | nC-14 Tetradecane | 0.026 | 0.952 | 0.026 | 0.967 | 0.027 | 0.978 | 0.026 | 0.950 | | nC-15 Pentadecane | 0.023 | 0.952 | 0.023 | 0.967 | 0.023 | 0.978 | 0.023 | 0.950 | | nC-16 Hexadecane | 0.021 | 0.952 | 0.022 | 0.967 | 0.022 | 0.978 | 0.021 | 0.950 | | nC-17 Heptadecane | 0.046 | 0.952 | 0.046 | 0.967 | 0.047 | 0.978 | 0.046 | 0.950 | | Pristane | 0.044 | 0.952 | 0.045 | 0.967 | 0.045 | 0.978 | 0.044 | 0.950 | | nC-18 Octadecane | 0.067 | 0.952 | 0.068 | 0.967 | 0.069 | 0.978 | 0.067 | 0.950 | | Phytane | 0.069 | 0.952 | 0.070 | 0.967 | 0.071 | 0.978 | 0.069 | 0.950 | | nC-19 Nonadecane | 0.038 | 0.952 | 0.038 | 0.967 | 0.039 | 0.978 | 0.037 | 0.950 | | nC-20 Eicosane | 0.039 | 0.952 | 0.040 | 0.967 | 0.041 | 0.978 | 0.039 | 0.950 | | nC-21 Heneicosane | 0.033 | 0.952 | 0.033 | 0.967 | 0.034 | 0.978 | 0.033 | 0.950 | | nC-22 Docosane | 0.066 | 0.952 | 0.067 | 0.967 | 0.068 | 0.978 | 0.066 | 0.950 | | nC-23 Tricosane | 0.037 | 0.952 | 0.038 | 0.967 | 0.038 | 0.978 | 0.037 | 0.950 | | nC-24 Tetracosane | 0.059 | 0.952 | 0.060 | 0.967 | 0.060 | 0.978 | 0.058 | 0.950 | | nC-25 Pentacosane | 0.186 | 0.952 | 0.188 | 0.967 | 0.190 | 0.978 | 0.185 | 0.950 | | nC-26 Hexacosane | 0.157 | 0.952 | 0.159 | 0.967 | 0.161 | 0.978 | 0.157 | 0.950 | | nC-27 Heptacosane | 0.124 | 0.952 | 0.126 | 0.967 | 0.127 | 0.978 | 0.124 | 0.950 | | nC-28 Octacosane | 0.199 | 0.952 | 0.202 | 0.967 | 0.204 | 0.978 | 0.198 | 0.950 | | nC-29 Nonacosane | 0.150 | 0.952 | 0.152 | 0.967 | 0.153 | 0.978 | 0.149 | 0.950 | | nC-30 Triacontane | 0.083 | 0.952 | 0.084 | 0.967 | 0.085 | 0.978 | 0.082 | 0.950 | | nC-31 Hentriacontane | 0.084 | 0.952 | 0.085 | 0.967 | 0.086 | 0.978 | 0.084 | 0.950 | | nC-32 Dotriacontane | 0.048 | 0.952 | 0.049 | 0.967 | 0.049 | 0.978 | 0.048 | 0.950 | | nC-33 Tritriacontane | 0.070 | 0.952 | 0.071 | 0.967 | 0.072 | 0.978 | 0.070 | 0.950 | | nC-34 Tetratriacontane | 0.069 | 0.952 | 0.070 | 0.967 | 0.071 | 0.978 | 0.069 | 0.950 | | nC-35 Pentatriacontane | 0.034 | 0.952 | 0.035 | 0.967 | 0.035 | 0.978 | 0.034 | 0.950 | | | | | | | | | | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Troject Wallie. | St. Croix Spin | | | | | | | | |----------------------------|----------------|------------|--------|-----------|--------|-----------|--------|-----------| | Client ID | 352383 | 39-001 PS | 352384 | 10-001 PS | 352384 | 10-002 PS | 352384 | 11-001 PS | | RCAT ID | 2010 | 355-38 | 2010 | 355-39 | 2010 | 355-40 | 2010 | 355-41 | | Sample Matrix | w | ater | \\ | ater | 14. | ater | | ater | | Analytical Instrument | | | | | | | | | | | | stang
- | | stang | Mu | stang | | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 10 | 050 | 10 | 034 | 1 | 023 | 1 | 053 | | Sample Unit-Basis | , | ml | | ml | | ml | | ml | | Units | n | g/L | | g/L | | g/L | | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | Naphthalene | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | C1-Naphthalenes | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | C2-Naphthalenes | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | C3-Naphthalenes | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | C4-Naphthalenes | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | 0.226 | 5.030 | | Fluorene | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | | C1-Fluorenes | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | | C2-Fluorenes | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | | C3- Fluorenes | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | 0.517 | 5.030 | | Dibenzothiophene | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C1-Dibenzothiophenes | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | |
C2-Dibenzothiophenes | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C3- Dibenzothiophenes | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | Phenanthrene | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | C1-Phenanthrenes | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | C2-Phenanthrenes | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | C3-Phenanthrenes | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | C4-Phenanthrenes | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | 0.385 | 5.030 | | Anthracene | 0.400 | 5.030 | 0.400 | 5.030 | 0.400 | 5.030 | 0.400 | 5.030 | | Fluoranthene | 0.687 | 5.030 | 0.687 | 5.030 | 0.687 | 5.030 | 0.687 | 5.030 | | Pyrene | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | | C1- Pyrenes | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | | C2- Pyrenes | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | | C3- Pyrenes | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | | C4- Pyrenes | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | 0.814 | 5.030 | | Naphthobenzothiophene | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C-1 Naphthobenzothiophenes | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C-2 Naphthobenzothiophenes | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | C-3 Naphthobenzothiophenes | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | 0.663 | 5.030 | | Benzo (a) Anthracene | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | Chrysen e | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | C1- Chrysenes | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | C2- Chrysenes | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | C3- Chrysenes | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | C4- Chrysenes | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | 1.105 | 5.030 | | Benzo (b) Fluoranthene | 0.756 | 5.030 | 0.756 | 5.030 | 0.756 | 5.030 | 0.756 | 5.030 | | Benzo (k) Fluoranthene | 0.710 | 5.030 | 0.710 | 5.030 | 0.710 | 5.030 | 0.710 | 5.030 | | Benzo (e) Pyrene | 1.015 | 5.030 | 1.015 | 5.030 | 1.015 | 5.030 | 1.015 | 5.030 | | Benzo (a) Pyrene | 0.848 | 5.030 | 0.848 | 5.030 | 0.848 | 5.030 | 0.848 | 5.030 | | Perylene | 0.270 | 5.030 | 0.270 | 5.030 | 0.270 | 5.030 | 0.270 | 5.030 | | Indeno (1,2,3 - cd) Pyrene | 1.972 | 5.030 | 1.972 | 5.030 | 1.972 | 5.030 | 1.972 | 5.030 | | Dibenzo (a,h) anthracene | 1.721 | 5.030 | 1.721 | 5.030 | 1.721 | 5.030 | 1.721 | 5.030 | | Benzo (g,h,i) perylene | 2.219 | 5.030 | 2.219 | 5.030 | 2.219 | 5.030 | 2.219 | 5.030 | | | | | | | | | | | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Client ID | 3523842-001 PS | 3523843-001 PS | 3523844-001 PS | 3523845-001 PS | |------------------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010355-42 | 2010355-43 | 2010355-44 | 2010355-45 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1053 | 1048 | 1049 | 1047 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | U | | nC-11 Undecane | Ü | Ü | Ü | Ü | | nC-12 Dodecane | Ü | Ū [*] | Ü | Ü | | nC-13 Tridecane | U | Ü | U | Ü | | nC-14 Tetradecane | U | Ū | U | U | | nC-15 Pentadecane | U | Ü | Ü | U | | nC-16 Hexadecane | U | 0.033 J | Ü | U | | nC-17 Heptadecane | U | U | U | U | | Pristane | U | U | Ü | U | | nC-18 Octadecane | U | U | Ū | U | | Phytane | U | U | Ü | U | | nC-19 Nonadecane | U | U | Ū | Ü | | nC-20 Eicosane | U | U | Ü | Ü | | nC-21 Heneicosane | U | 0.056 J | 0.063 J | Ü | | nC-22 Docosane | U | U | U | Ü | | nC-23 Tricosane | 0.038 J | U | 0.039 J | Ü | | nC-24 Tetracosane | U | 0.113 J | 0.086 J | 0.066 J | | nC-25 Pentacosane | U | 0.258 J | U | U | | nC-26 Hexacosane | U | U | U | Ü | | nC-27 Heptacosane | U | U | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | U | U | U | | nC-30 Triacontane | U | U | U | U | | nC-31 Hentriacontane | U | U | U | U | | nC-32 Dotriacontane | U | U | U | U | | nC-33 Tritriacontane | U | U | Ü | U | | nC-34 Tetratriacontane | U | U | Ü | Ü | | nC-35 Pentatriacontane | U | U | U | U | | Total Alkanes | 0.038 | 0.460 | 0.188 | 0.066 | | Surrogate Recovery (%) | | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Froject Name. | St. Croix Spiri | | | | |----------------------------|-----------------|----------------|----------------|----------------| | Client ID | 3523842-001 PS | 3523843-001 PS | 3523844-001 PS | 3523845-001 PS | | RCAT ID | 2010355-42 | 2010355-43 | 2010355-44 | 2010355-45 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | | | % Moisture | 0 | 0 | • | Mustang | | % Lipid | | | 0 | 0 | | | 0.000 | 0 | 0 | 0 | | Sample Size | 1053 | 1048 | 1049 | 1047 | | Sample Unit-Basis | m! | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Naphthalene | U | U | U | U | | C1-Naphthalenes | Ü | Ü | Ŭ | U | | C2-Naphthalenes | Ü | Ŭ | Ü | Ü | | C3-Naphthalenes | U | Ū | 0.306 J | ŭ | | C4-Naphthalenes | U | Ū | U | Ŭ | | Fluorene | U | ū | Ü | Ŭ | | C1-Fluorenes | U | Ū | Ŭ | Ü | | C2-Fluorenes | Ü | ŭ | Ŭ | Ü | | C3- Fluorenes | U | Ū | Ü | Ŭ | | Dibenzothiophene | Ū | Ü | ŭ | Ü | | C1-Dibenzothiophenes | Ū | Ü | Ü | Ü | | C2-Dibenzothiophenes | Ü | Ŭ | Ü | Ü | | C3- Dibenzothiophenes | U | Ū | Ü | Ŭ | | Phenanthrene | U | Ū | Ü | Ŭ | | C1-Phenanthrenes | U | Ū | Ü | Ü | | C2-Phenanthrenes | U | Ū | Ü | ŭ | | C3-Phenanthrenes | U | Ū | Ü | Ü | | C4-Phenanthrenes | U | U | Ü | Ŭ | | Anthracene | U | U | Ü | ŭ | | Fluoranthene | U | U | Ū | ŭ | | Pyrene | U | Ū | Ü | Ŭ | | C1- Pyrenes | U | U | Ū | ŭ | | C2- Pyrenes | U | U | Ū | Ū | | C3- Pyrenes | U | U | Ū | Ū | | C4- Pyrenes | U | U | Ū | Ü | | Naphthobenzothiophene | U | U | Ü | Ü | | C-1 Naphthobenzothiophenes | U | U | U | Ū | | C-2 Naphthobenzothiophenes | U | U | U | Ū | | C-3 Naphthobenzothiophenes | U | U | U | Ū | | Benzo (a) Anthracene | U | U | U | Ū | | Chrysene | U | U | U | Ŭ | | C1- Chrysenes | U | U | U | Ū | | C2- Chrysenes | U | Ŭ | U | Ū | | C3- Chrysenes | U | U | U | U | | C4- Chrysenes | U | U | U | U | | Benzo (b) Fluoranthene | U | U | U | U | | Benzo (k) Fluoranthene | U | U | U | Ū | | Benzo (e) Pyrene | U | U | U | Ü | | Benzo (a) Pyrene | U | U | U | Ū | | Perylene | U | U | U | U | | Indeno (1,2,3 - cd) Pyrene | U | U | U | Ū | | Dibenzo (a,h) anthracene | U | U | U | Ū | | Benzo (g,h,i) perylene | U | U | U | Ū | | Total Aromatics | 0.000 | 0.000 | 0.306 | 0.000 | | % Surrogate Recovery | | | ****** | | |----------------------|---|---|--------|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | | | |------------------------|-----------------|-----------|--------|-----------|--------|-----------|--------|----------| | Client ID | 352384 | 12-001 PS | 352384 | 13-001 PS | 352384 | 44-001 PS | 352384 | 5-001 PS | | RCAT ID | 2010 | 355-42 | 2010 | 355-43 | 2010 | 355-44 | 2010 | 355-45 | | Sample Matrix | w | ater | w | ater | w | ater | W | ater | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | Mus | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 10 | 053 | 10 | 048 | 10 | 049 | 10 | 047 | | Sample Unit-Basis | 1 | ml | r | ml | | ml | r | nl | | Units | u | g/L | u | g/L | u | g/L | U) | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.950 | 0.016 | 0.954 | 0.016 | 0.953 | 0.016 | 0.955 | | nC-11 Undecane | 0.012 | 0.953 | 0.012 | 0.954 | 0.012 | 0.953 | 0.012 | 0.955 | | nC-12 Dodecane | 0.014 | 0.953 | 0.014 | 0.954 | 0.014 | 0.953 | 0.014 | 0.955 | | nC-13 Tridecane | 0.011 | 0.953 | 0.011 | 0.954 | 0.011 | 0.953 | 0.011 | 0.955 | | nC-14 Tetradecane | 0.026 | 0.953 | 0.026 | 0.954 | 0.026 | 0.953 | 0.026 | 0.955 | | nC-15 Pentadecane | 0.023 | 0.953 | 0.023 | 0.954 | 0.023 | 0.953 | 0.023 | 0.955 | | nC-16 Hexadecane | 0.021 | 0.953 | 0.021 | 0.954 | 0.021 | 0.953 | 0.021 | 0.955 | | nC-17 Heptadecane | 0.046 | 0.953 | 0.046 | 0.954 | 0.046 | 0.953 | 0.046 | 0.955 | | Pristane | 0.044 | 0.953 | 0.044 | 0.954 | 0.044 | 0.953 | 0.044 | 0.955 | | nC-18 Octadecane | 0.067 | 0.953 | 0.067 | 0.954 | 0.067 | 0.953 | 0.067 | 0.955 | | Phytane | 0.069 | 0.953 | 0.069 | 0.954 | 0.069 | 0.953 | 0.069 | 0.955 | | nC-19 Nonadecane | 0.038 | 0.953 | 0.038 | 0.954 | 0.038 | 0.953 | 0.038 | 0.955 | | nC-20 Eicosane | 0.040 | 0.953 | 0.040 | 0.954 | 0.040 | 0.953 | 0.040 | 0.955 | | nC-21 Heneicosane | 0.033 | 0.953 | 0.033 | 0.954 | 0.033 | 0.953 | 0.033 | 0.955 | | nC-22 Docosane | 0.066 | 0.953 | 0.066 | 0.954 | 0.066 | 0.953 | 0.066 | 0.955 | | nC-23 Tricosane | 0.037 | 0.953 | 0.037 | 0.954 | 0.037 | 0.953 | 0.037 | 0.955 | | nC-24 Tetracosane | 0.059 | 0.953 | 0.059 | 0.954 | 0.059 | 0.953 | 0.059 | 0.955 | | nC-25 Pentacosane | 0.186 | 0.953 | 0.186 | 0.954 | 0.186 | 0.953 | 0.186 | 0.955 | | nC-26 Hexacosane | 0.157 | 0.953 | 0.157 | 0.954 | 0.157 | 0.953 | 0.157 | 0.955 | | nC-27 Heptacosane | 0.124 | 0.953 | 0.124 | 0.954 | 0.124 | 0.953 | 0.124 | 0.955 | | nC-28 Octacosane | 0.199 | 0.953 | 0.199 | 0.954 | 0.199 | 0.953 | 0.199 | 0.955 | | nC-29 Nonacosane | 0.150 | 0.953 | 0.150 | 0.954 | 0.150 | 0.953 | 0.150 | 0.955 | | nC-30
Triacontane | 0.083 | 0.953 | 0.083 | 0.954 | 0.083 | 0.953 | 0.083 | 0.955 | | nC-31 Hentriacontane | 0.084 | 0.953 | 0.084 | 0.954 | 0.084 | 0.953 | 0.084 | 0.955 | | nC-32 Dotriacontane | 0.048 | 0.953 | 0.048 | 0.954 | 0.048 | 0.953 | 0.048 | 0.955 | | nC-33 Tritriacontane | 0.070 | 0.953 | 0.071 | 0.954 | 0.070 | 0.953 | 0.071 | 0.955 | | nC-34 Tetratriacontane | 0.069 | 0.953 | 0.069 | 0.954 | 0.069 | 0.953 | 0.069 | 0.955 | | nC-35 Pentatriacontane | 0.034 | 0.953 | 0.034 | 0.954 | 0.034 | 0.953 | 0.034 | 0.955 | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 35238 | 42-001 PS | 352384 | 43-001 PS | 35238 | 14-001 PS | 352384 | \$5-001 PS | |-----------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010 | 355-42 | 2010 | 355-43 | 2010 | 355-44 | 2010 | 355-45 | | Sample Matrix | W | /ater | w | ater | | ater | | ater | | Analytical Instrument | | stang | | | | | | | | | IVIC | - | | stang | Mu | stang | Mu | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 053 | 1 | 048 | 1 | 049 | 10 | 047 | | Sample Unit-Basis | | ml | | ml | | mi | | ml | | Units | п | g/L | n | g/L | | g/L | |
g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | Naphthalene | 0.213 | 4.748 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C1-Naphthalenes | 0.213 | 4.748 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4,771 | | C2-Naphthalenes | 0.213 | 4.748 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C3-Naphthalenes | 0.213 | 4.748 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | C4-Naphthalenes | 0.213 | 4.748 | 0.214 | 4.771 | 0.214 | 4.771 | 0.214 | 4.771 | | Fluorene | 0.488 | 4.748 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | C1-Fluorenes | 0.488 | 4.748 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | C2-Fluorenes | 0.488 | 4.748 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | C3- Fluorenes | 0.488 | 4.748 | 0.491 | 4.771 | 0.491 | 4.771 | 0.491 | 4.771 | | Dibenzothiophene | 0.626 | 4.748 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C1-Dibenzothiophenes | 0.626 | 4.748 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C2-Dibenzothiophenes | 0.626 | 4.748 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C3- Dibenzothiophenes | 0.626 | 4.748 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | Phenanthrene
C4 Phenanthrene | 0.364 | 4.748 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C1-Phenanthrenes C2-Phenanthrenes | 0.364 | 4.748 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C3-Phenanthrenes | 0.364 | 4.748 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | C4-Phenanthrenes | 0.364
0.364 | 4.748 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | Anthracene | 0.364 | 4.748 | 0.365 | 4.771 | 0.365 | 4.771 | 0.365 | 4.771 | | Fluoranthene | 0.648 | 4.748
4.748 | 0.380 | 4.771 | 0.380 | 4.771 | 0.380 | 4.771 | | Pyrene | 0.768 | 4.748 | 0.651
0.772 | 4.771
4.771 | 0.651 | 4.771 | 0.651 | 4.771 | | C1- Pyrenes | 0.768 | 4.748 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | C2- Pyrenes | 0.768 | 4.748 | 0.772 | 4.771 | 0.772
0.772 | 4.771
4.771 | 0.772 | 4.771 | | C3- Pyrenes | 0.768 | 4.748 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772
0.772 | 4.771 | | C4- Pyrenes | 0.768 | 4.748 | 0.772 | 4.771 | 0.772 | 4.771 | 0.772 | 4.771 | | Naphthobenzothiophene | 0.626 | 4.748 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771
4.771 | | C-1 Naphthobenzothiophenes | 0.626 | 4.748 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | C-2 Naphthobenzothiophenes | 0.626 | 4.748 | 0.629 | 4,771 | 0.629 | 4.771 | 0.629 | 4.771 | | C-3 Naphthobenzothiophenes | 0.626 | 4.748 | 0.629 | 4.771 | 0.629 | 4.771 | 0.629 | 4.771 | | Benzo (a) Anthracene | 1.043 | 4.748 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | Chrysene | 1.043 | 4.748 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C1- Chrysenes | 1.043 | 4.748 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C2- Chrysenes | 1.043 | 4.748 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C3- Chrysenes | 1.043 | 4.748 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | C4- Chrysenes | 1.043 | 4.748 | 1.048 | 4.771 | 1.048 | 4.771 | 1.048 | 4.771 | | Benzo (b) Fluoranthene | 0.713 | 4.748 | 0.717 | 4.771 | 0.717 | 4.771 | 0.717 | 4.771 | | Benzo (k) Fluoranthene | 0.670 | 4.748 | 0.673 | 4.771 | 0.673 | 4.771 | 0.673 | 4.771 | | Benzo (e) Pyrene | 0.959 | 4.748 | 0.963 | 4.771 | 0.963 | 4.771 | 0.963 | 4.771 | | Benzo (a) Pyrene | 0.801 | 4.748 | 0.804 | 4.771 | 0.804 | 4.771 | 0.804 | 4.771 | | Perylene | 0.255 | 4.748 | 0.256 | 4.771 | 0.256 | 4.771 | 0.256 | 4.771 | | Indeno (1,2,3 - cd) Pyrene | 1.861 | 4.748 | 1.870 | 4.771 | 1.870 | 4.771 | 1.870 | 4.771 | | Dibenzo (a,h) anthracene | 1.625 | 4.748 | 1.632 | 4.771 | 1.632 | 4.771 | 1.632 | 4.771 | | Benzo (g,h,i) perylene | 2.095 | 4.748 | 2.105 | 4.771 | 2.105 | 4.771 | 2.105 | 4.771 | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Client ID | 3523846-001 PS | 152912 BLANK | 152913 LCS | 152914 LCSD | |------------------------|----------------|--------------|------------|-------------| | RCAT ID | 2010355-46 | 2010355-47 | 2010355-48 | 2010355-49 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | | | Sample Size | 1049 | 1000 | 1000 | 1000 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | U | U | U | | nC-11 Undecane | U | U | U | U | | nC-12 Dodecane | U | U | U | U | | nC-13 Tridecane | U | U | U | U | | nC-14 Tetradecane | U | U | U | U | | nC-15 Pentadecane | U | U | υ | U | | nC-16 Hexadecane | U | U | u | U | | nC-17 Heptadecane | U | U | U | U | | Pristane | U | U | U | U | | nC-18 Octadecane | U | U | U | U | | Phytane | U | u | U | U | | nC-19 Nonadecane | U | u | U | U | | nC-20 Eicosane | U | u | U | U | | nC-21 Heneicosane | U | U | U | U | | nC-22 Docosane | U | U | U | U | | nC-23 Tricosane | U | U | U | U | | nC-24 Tetracosane | U | υ | U | U | | nC-25 Pentacosane | U | U | U | U | | nC-26 Hexacosane | U | U | U | U | | nC-27 Heptacosane | U | U | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | U | U | U | | nC-30 Triacontane | U | U | U | U | | nC-31 Hentriacontane | U | U | U | U | | nC-32 Dotriacontane | υ | U | U | U | | nC-33 Tritriacontane | U | U | U | U | | nC-34 Tetratriacontane | U | U | U | U | | nC-35 Pentatriacontane | U | U | U | U | | Total Alkanes | 0.000 | 0.000 | 0.000 | 0.000 | | Surrogate Recovery (%) | | | | | |------------------------|---|---|---|---| | 5 Alpha Androstane | 0 | 0 | 0 | 0 | | | | | | | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Client ID RCAT ID Sample Matrix Analytical Instrument % Moisture % Lipid Sample Size Sample Unit-Basis | 3523846-001 PS 2010355-46 Water Mustang 0 1049 ml ng/L | 152912 BLANK 2010355-47 Water Mustang 0 1000 ml ng/L | 152913 LCS 2010355-48 Water Mustang 0 0 1000 ml | 152914 LCSD 2010355-49 Water Mustang 0 0 1000 | |---|---|---|--|---| | Sample Matrix
Analytical Instrument
% Moisture
% Lipid
Sample Size | Water
Mustang
0
0
1049
ml | Water
Mustang
0
0
1000
ml | Water
Mustang
O
O
1000 | Water
Mustang
O
O | | Analytical Instrument
% Moisture
% Lipid
Sample Size | Mustang
0
0
1049
ml | Mustang
0
0
1000
ml | Mustang
0
0
1000 | Mustang
0
0 | | Analytical Instrument
% Moisture
% Lipid
Sample Size | Mustang
0
0
1049
ml | Mustang
0
0
1000
ml | Mustang
0
0
1000 | Mustang
0
0 | | % Moisture
% Lipid
Sample Size | 0
0
1049
ml | 0
0
1000
ml | 0
0
1000 | 0 | | % Lipid
Sample Size | 0
1049
ml | 0
1000
ml | 0
1000 | 0 | | Sample Size | 1049
ml | 1000
ml | 1000 | | | · | ml | ml | | 1000 | | Sample Unit-Basis | | | ml | | | | ng/L | ng/L | | ml | | Units | | ₹* | ng/L | ng/L | | Naphthalene | U | U | 2230 | 2300 | | C1-Naphthalenes | U | · U | U | U | | C2-Naphthalenes | U | U | U | U | | C3-Naphthalenes | U | U | U | U | | C4-Naphthalenes | U | U | U | U | | Fluorene | U | U | 2800 | 2770 | | C1-Fluorenes | U | U | U | U | | C2-Fluorenes | U | U | U | U | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene | U | U | U | U | | C1-Dibenzothiophenes | U | U | U | U | | C2-Dibenzothiophenes | U | U | U | U | | C3- Dibenzothiophenes | U | U | U | U | | Phenanthrene | U | U | 2490 | 2420 | | C1-Phenanthrenes | U | U | U | U | | C2-Phenanthrenes | U | U | U | U | | C3-Phenanthrenes | U | U | U | U | | C4-Phenanthrenes | U | U | U | U | | Anthracene | U | Ŭ | 2950 | 2920 | | Fluoranthene | U | Ŭ | 3950 | 3810 | | Pyrene | U | Ŭ | 3930 | 3770 | | C1- Pyrenes | U | U | U | U | | C2- Pyrenes | U | U | U | U | | C3- Pyrenes | U | U | U | U | | C4- Pyrenes | U | U | U | U | | Naphthobenzothiophene | U | U | U | U | | C-1 Naphthobenzothiophenes | U | U | U | U | | C-2 Naphthobenzothiophenes | U
U | U | U
U | U | | C-3 Naphthobenzothiophenes | - | U | • | U | | Benzo (a) Anthracene | U
U | U
U | 3020 | 2740 | | Chrysene C1 Chrysens | U | U | 3950
U | 3460 | | C1- Chrysenes
C2- Chrysenes | U | U |
U | U
U | | · · · · · · · · · · · · · · · · · · · | U | U | U | U | | C3- Chrysenes
C4- Chrysenes | U | U | Ü | U | | Benzo (b) Fluoranthene | Ü | U | 2620 | 2870 | | Benzo (k) Fluoranthene | Ü | ŭ | 3430 | 3590 | | Benzo (e) Pyrene | ŭ | ŭ | 3430
U | 3590
U | | Benzo (a) Pyrene | Ü | U | 2550 | 2340 | | Perylene | Ŭ | ŭ | 2550
U | 2340
U | | Indeno (1,2,3 - cd) Pyrene | Ü | Ü | 1680 | 1620 | | Dibenzo (a,h) anthracene | Ü | Ü | 1930 | 1920 | | Benzo (g,h,i) perylene | Ü | Ü | 1720 | 1590 | | Total Aromatics | 0.000 | 0.000 | 39300 | 38100 | | % Surrogate Recovery | | | | | |----------------------|---|---|---|---| | Phenanthrene d-10 | 0 | 0 | 0 | 0 | | | | | | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | | | |------------------------|-----------------|----------|-------|---------|-------|--------|-------|--------| | Client ID | 352384 | 6-001 PS | 15291 | 2 BLANK | 1529 | 13 LCS | 15291 | 4 LCSD | | RCAT ID | 2010 | 355-46 | 2010 | 355-47 | 2010 | 355-48 | 2010 | 355-49 | | Sample Matrix | W | ater | w | ater | W | ater | Wa | ater | | Analytical Instrument | Mus | stang | Mu | stang | Mu | stang | Mus | stang | | % Moisture | | 0 | | 0 | | 0 | (| o | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 10 | 149 | 10 | 000 | 10 | 000 | 10 | 000 | | Sample Unit-Basis | г | nl | r | ml | r | ml | n | nl | | Units | uį | g/L | u | g/L | uį | g/L | uį | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.953 | 0.017 | 1.000 | 0.017 | 1.000 | 0.017 | 1.000 | | nC-11 Undecane | 0.012 | 0.953 | 0.013 | 1.000 | 0.013 | 1.000 | 0.013 | 1.000 | | nC-12 Dodecane | 0.014 | 0.953 | 0.015 | 1.000 | 0.015 | 1.000 | 0.015 | 1.000 | | nC-13 Tridecane | 0.011 | 0.953 | 0.011 | 1.000 | 0.011 | 1.000 | 0.011 | 1.000 | | nC-14 Tetradecane | 0.026 | 0.953 | 0.027 | 1.000 | 0.027 | 1.000 | 0.027 | 1.000 | | nC-15 Pentadecane | 0.023 | 0.953 | 0.024 | 1.000 | 0.024 | 1.000 | 0.024 | 1.000 | | nC-16 Hexadecane | 0.021 | 0.953 | 0.022 | 1.000 | 0.022 | 1.000 | 0.022 | 1.000 | | nC-17 Heptadecane | 0.046 | 0.953 | 0.048 | 1.000 | 0.048 | 1.000 | 0.048 | 1.000 | | Pristane | 0.044 | 0.953 | 0.046 | 1.000 | 0.046 | 1.000 | 0.046 | 1.000 | | nC-18 Octadecane | 0.067 | 0.953 | 0.070 | 1.000 | 0.070 | 1.000 | 0.070 | 1.000 | | Phytane | 0.069 | 0.953 | 0.073 | 1.000 | 0.073 | 1.000 | 0.073 | 1.000 | | nC-19 Nonadecane | 0.038 | 0.953 | 0.039 | 1.000 | 0.039 | 1.000 | 0.039 | 1.000 | | nC-20 Eicosane | 0.040 | 0.953 | 0.041 | 1.000 | 0.041 | 1.000 | 0.041 | 1.000 | | nC-21 Heneicosane | 0.033 | 0.953 | 0.034 | 1.000 | 0.034 | 1.000 | 0.034 | 1.000 | | nC-22 Docosane | 0.066 | 0.953 | 0.070 | 1.000 | 0.070 | 1.000 | 0.070 | 1.000 | | nC-23 Tricosane | 0.037 | 0.953 | 0.039 | 1.000 | 0.039 | 1.000 | 0.039 | 1.000 | | nC-24 Tetracosane | 0.059 | 0.953 | 0.062 | 1.000 | 0.062 | 1.000 | 0.062 | 1.000 | | nC-25 Pentacosane | 0.186 | 0.953 | 0.195 | 1.000 | 0.195 | 1.000 | 0.195 | 1.000 | | nC-26 Hexacosane | 0.157 | 0.953 | 0.165 | 1.000 | 0.165 | 1.000 | 0.165 | 1.000 | | nC-27 Heptacosane | 0.124 | 0.953 | 0.130 | 1.000 | 0.130 | 1.000 | 0.130 | 1.000 | | nC-28 Octacosane | 0.199 | 0.953 | 0.208 | 1.000 | 0.208 | 1.000 | 0.208 | 1.000 | | nC-29 Nonacosane | 0.150 | 0.953 | 0.157 | 1.000 | 0.157 | 1.000 | 0.157 | 1.000 | | nC-30 Triacontane | 0.083 | 0.953 | 0.087 | 1.000 | 0.087 | 1.000 | 0.087 | 1.000 | | nC-31 Hentriacontane | 0.084 | 0.953 | 0.088 | 1.000 | 0.088 | 1.000 | 0.088 | 1.000 | | nC-32 Dotriacontane | 0.048 | 0.953 | 0.051 | 1.000 | 0.051 | 1.000 | 0.051 | 1.000 | | nC-33 Tritriacontane | 0.070 | 0.953 | 0.074 | 1.000 | 0.074 | 1.000 | 0.074 | 1.000 | | nC-34 Tetratriacontane | 0.069 | 0.953 | 0.073 | 1.000 | 0.073 | 1.000 | 0.073 | 1.000 | | nC-35 Pentatriacontane | 0.034 | 0.953 | 0.036 | 1.000 | 0.036 | 1.000 | 0.036 | 1.000 | | | | | | | | | | | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Clear ID | Project Name. | St. Croix Spili | | | | | | | | |--|--------------------|-----------------|-----------|-------|---------|-------|--------|-------|---------| | Sample Matrix Mustang | Client ID | 35238 | 46-001 PS | 15291 | 2 BLANK | 1529 | 13 LCS | 15291 | 14 LCSD | | Sample Martix | RCAT ID | 2010 | 355-46 | 2010 | 355-47 | 2010 | 355-48 | 2010 | 355-49 | | Mustang | Sample Matrix | ١٨. | later | | | | | | | | St. Moisture | , | | | | | | | | | | Supple S | • | IVIU | ū | | Ü | | - | Mu | stang | | Sample Size 1049 1000 | % Moisture | | 0 | | 0 | | 0 | | 0 | | Sample Unit-Basis | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Unit-Basis | Sample Size | 1 | 049 | 10 | 000 | 10 | 000 | 10 | 000 | | Naphthalene | Sample Unit-Basis | | ml | , | ml | | | | | | Mol. Mol. Mol. Mol. Mol. Rol. | Units | | | | | | | | | | Naphthalene | | | | | | | | | | | C1-Naphthalenes 0.214 4.771 0.491 4.771 0.629 4.771
0.629 4.771 0. | Naphthalene | | | | | | | | - | | C2-Naphthalenes 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.491 4.771 0.629 4.771 0.629 | • | | | | | | | | | | C3-Naphthalenes 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.481 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 | • | | | | | | | | | | C4-Naphthalenes 0.214 4.771 0.214 4.771 0.214 4.771 0.214 4.771 0.491 4.771 0.629 | • | | | | | | | | | | Fluorene 0.491 4.771 0.629 4.771 0.365 4.771 0.372 4.771 0.772 4.7 | | | | | | | | | | | C1-Fluorenes 0.491 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.492 4.771 0.365 | • | | | | | | | | | | C2-Flurenes 0.491 4.771 0.629 4.771 0.772 4.771 0.772 | | | | | | | | | | | C3- Fluorenes 0.491 4.771 0.491 4.771 0.491 4.771 0.491 4.771 0.481 4.771 Dibenzothiophene 0.629 4.771 0.365 4.771 0.365 4.771 0.365 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | | Dibenzothiophene | | | | | | | | | | | C1-Dibenzothiophenes 0.629 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771
0.772 4.771 0.772 4.7 | | | | | | | | | | | C2-Dibenzothiophenes 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 C3- Dibenzothiophenes 0.629 4.771 0.629 4.771 0.365 4.771 | • | | | | | | | | | | C3- Dibenzothiophenes 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.365< | | | | | | | | | | | Phenanthrene 0.365 4.771 0.365 | | | | | | | | | | | C1-Phenanthrenes 0.365 4.771 0.365 | | | | | | | | | | | C2-Phenanthrenes 0.365 4.771 0.380 4.771 0.380 4.771 0.380 4.771 0.380 4.771 0.380 4.771 0.380 4.771 0.380 4.771 0.380 4.771 0.380 4.771 0.380 4.771 0.772 4.771 0 | | | | | | | | | | | C3-Phenanthrenes 0.365 4.771 0.380 4.771 0.380 4.771 0.651 4.771 0.651 4.771 0.672 4.771 0.772 4.771 0.772 4.771 0.772 | | | | | | | | | | | C4-Phenanthrenes 0.365 4.771 0.365 4.771 0.365 4.771 0.365 4.771 0.365 4.771 0.365 4.771 0.365 4.771 0.365 4.771 0.365 4.771 0.365 4.771 0.365 4.771 0.380 4.771 0.380 4.771 0.651 4.771 0.651 4.771 0.651 4.771 0.651 4.771 0.651 4.771 0.651 4.771 0.651 4.771 0.651 4.771 0.651 4.771 0.651 4.771 0.772 | | | | | | | | | | | Anthracene 0.380 4.771 0.380 4.771 0.380 4.771 0.380 4.771 1.0380 4.771 0.380 4.771 1.0380 4.771 | | | | | | | | | | | Fluoranthene | | | | | | | | | | | Pyrene 0.772 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | C1- Pyrenes 0.772 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771
0.629 4.771 0.629 | | | | | | | | | | | C2- Pyrenes 0.772 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 | | | | | | | | | | | C3- Pyrenes 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.629 | | | | | | | | | | | C4- Pyrenes 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.772 4.771 0.629 | | | | | | | | | | | Naphthobenzothiophene 0.629 4.771 0.629< | | | | | | | | | | | C-1 Naphthobenzothiophenes 0.629 4.771 0.6 | | | | | | | | | | | C-2 Naphthobenzothiophenes 0.629 4.771 0.6 | | | | | | | | | | | C-3 Naphthobenzothiophenes 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 0.629 4.771 1.048 4.771 1 | | | | | | | | | | | Benzo (a) Anthracene 1.048 4.771 1.048 </td <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | · | | | | | | | | | | Chrysene 1.048 4.771 1.048
4.771 1.048 4.7 | | | | | | | | | | | C1- Chrysenes 1.048 4.771 1.04 | * / | | | | | | | | | | C2- Chrysenes 1.048 4.771 0.717 4.771 0.717 4.771 0.717 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.804 | | | | | | | | | | | C3- Chrysenes 1.048 4.771 1.04 | | | | | | | | | | | C4- Chrysenes 1.048 4.771 1.048 4.771 1.048 4.771 1.048 4.771 1.048 4.771 1.048 4.771 1.048 4.771 1.048 4.771 1.048 4.771 1.048 4.771 1.048 4.771 0.717 4.771 0.717 4.771 0.717 4.771 0.717 4.771 0.717 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 | | | | | | | | | | | Benzo (b) Fluoranthene 0.717 4.771 0.717 4.771 0.717 4.771 0.717 4.771 0.717 4.771 0.717 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.804 | | | | | | | | | | | Benzo (k) Fluoranthene 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.673 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.963 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 0.256 4.771 0.256 4.771 0.256 4.771 0.256 4.771 1.870 4.771 1.870 4.771 1.870 4.771 1.870 4.771 1.632 4.771 1.632 4.771 1.632 4.771 1.632 4.771 | | | | | | | | | | | Benzo (e) Pyrene 0.963 4.771 0.963 4.771 0.963 4.771 0.963 4.771 Benzo (a) Pyrene 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 Perylene 0.256 4.771 0.256 4.771 0.256 4.771 0.256 4.771 Indeno (1,2,3 - cd) Pyrene 1.870 4.771 1.870 4.771 1.870 4.771 1.870 4.771 Dibenzo (a,h) anthracene 1.632 4.771 1.632 4.771 1.632 4.771 | | | | | | | | | | | Benzo (a) Pyrene 0.804 4.771 0.804 4.771 0.804 4.771 0.804 4.771 Perylene 0.256 4.771 0.256 4.771 0.256 4.771 0.256 4.771 Indeno (1,2,3 - cd) Pyrene 1.870 4.771 1.870 4.771 1.870 4.771 Dibenzo (a,h) anthracene 1.632 4.771 1.632 4.771 1.632 4.771 | . , | | | | | | | | | | Perylene 0.256 4.771 0.256 4.771 0.256 4.771 0.256 4.771 0.256 4.771 0.256 4.771 1.870 4.771 1.870 4.771 1.870 4.771 1.870 4.771 1.870 4.771 1.632 4.771 1.632 4.771 1.632 4.771 1.632 4.771 1.632 4.771 | | | | | | | | | | | Indeno (1,2,3 - cd) Pyrene 1.870 4.771 1.870 4.771 1.870 4.771 1.870 4.771 Dibenzo (a,h) anthracene 1.632 4.771 1.632 4.771 1.632 4.771 | | | | | | | | | | | Dibenzo (a,h) anthracene 1.632 4.771 1.632 4.771 1.632 4.771 | | | | | | | | | | | Description (a.6.) | | | | | | | | | | | 2.100 4.7/1 2.100 4.7/1 2.100 4.7/1 | , | | | | | | | | | | | (g, m) por justice | 2.100 | 7.77 | 2.100 | 4.771 | 2.100 | 4.771 | 2.105 | 4.771 | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Client: | Hovensa | |-----------------|-----------------| | Project Name: | St. Croix Spill | | Client ID | 3523847-001 PS | Laboratory Water Blank | 198 CLIFTON HILL-A | 250 CLIFTON HILL-A | |--|----------------|------------------------|--------------------|--------------------| | RCAT ID | 2010355-50 | MBW10358A | 2010356-01 | 2010356-03 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | | | | Ū | | Sample Size | 1049 | 1000 | 1050 | 1050 | | Sample Unit-Basis | mi | mi | ml | ml | | Units | ug/L | ug/L | ug/L | ug/L | | nC-10 Decane | U | | | | | nC-11 Undecane | | U | U | U | | | U | U | U | U | | nC-12 Dodecane
nC-13 Tridecane | U | U | U | U | | | U | U | U | U | | nC-14 Tetradecane
nC-15 Pentadecane | U | U | U | U | | | U | U | U | U | | nC-16 Hexadecane | U | U | U | U | | nC-17 Heptadecane | U | U | U | U | | Pristane | U | U | U_ N | 11 2 U | | nC-18 Octadecane | U | U | بها کار | 113
111) u | | Phytane | U | U | | <i>11()</i> | | nC-19 Nonadecane | U | U | U | U | | nC-20 Eicosane | U | U | U | U | | nC-21 Heneicosane | U | U | U | U | | nC-22 Docosane | U | U | U | U | | nC-23 Tricosane | U | U | U | U | |
nC-24 Tetracosane | U | U | U | U | | nC-25 Pentacosane | U | U | U | U | | nC-26 Hexacosane | U | U | U | U | | nC-27 Heptacosane | U | U | U | U | | nC-28 Octacosane | U | U | U | U | | nC-29 Nonacosane | U | U | U | U | | nC-30 Triacontane | U | U | U | U | | nC-31 Hentriacontane | U | U | U | U | | nC-32 Dotriacontane | U | U | U | U | | nC-33 Tritriacontane | U | U | U | U | | nC-34 Tetratriacontane | U | U | U | U | | nC-35 Pentatriacontane | U | U | _/U | U | | Total Alkanes | 0.000 | 0.000 | 00ھرہ | 0.000 | | Surrogate Recovery (%) | | | | | |------------------------|---|----|----|----| | 5 Alpha Androstane | 0 | 74 | 86 | 88 | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 3523847-001 PS | Laboratory Water Blank | 198 CLIFTON HILL-A | 250 CLIFTON HILL-A | |---|----------------|------------------------|--------------------|--------------------| | RCAT ID | 2010355-50 | MBW10358A | 2010356-01 | 2010356-03 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | 0.000 | 0 | 0 | 0 | | · | | | | | | Sample Size | 1049 | 1000 | 1050 | 1050 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Naphthalene | U | U | U | U | | C1-Naphthalenes | Ü | ŭ | ŭ | Ü | | C2-Naphthalenes | Ŭ | ŭ | ŭ | Ü | | C3-Naphthalenes | Ü | Ŭ | Ü | Ü | | C4-Naphthalenes | ŭ | ŭ | Ü | Ŭ | | Fluorene | U | ŭ | ŭ | U | | C1-Fluorenes | Ü | ŭ | ŭ | U | | C2-Fluorenes | Ü | Ü | ŭ | Ü | | C3-Fluorenes | U | Ü | ŭ | Ü | | | U | U | U | U | | Dibenzothiophene | U | U | U | | | C1-Dibenzothiophenes | U | U | | U | | C2-Dibenzothiophenes | U | U | Ŭ | U | | C3- Dibenzothiophenes | - | | Ų | U | | Phenanthrene | U | U | Ü | U | | C1-Phenanthrenes | U | U | U | U | | C2-Phenanthrenes | U | U | U | U | | C3-Phenanthrenes | U | U | U | U | | C4-Phenanthrenes | U | Ü | Ü | U | | Anthracene | U | U | U | U | | Fluoranthene | U | U | U | U | | Pyrene | U | Ų | U | U | | C1- Pyrenes | U | U | U | U | | C2- Pyrenes | U | U | U | U | | C3- Pyrenes | U | U | u | U | | C4- Pyrenes | U | U | U | U | | Naphthobenzothiophene | U | U | U | U | | C-1 Naphthobenzothiophenes | U | U | U | U | | C-2 Naphthobenzothiophenes | U | U | U | U | | C-3 Naphthobenzothiophenes | U | U | U | U | | Benzo (a) Anthracene | U | U | U | U | | Chrysene | U | U | U | U | | C1- Chrysenes | U | U | U | U | | C2- Chrysenes | U | U | U | U | | C3- Chrysenes | U | U | U | U | | C4- Chrysenes | U | U | U | U | | Benzo (b) Fluoranthene | U | U | U | U | | Benzo (k) Fluoranthene | U | U | U | U | | Benzo (e) Pyrene | U | U | U | U | | Benzo (a) Pyrene | U | U | U | U | | Perylene | U | U | U | U | | Indeno (1,2,3 - cd) Pyrene | U | U | U | U | | Dibenzo (a,h) anthracene | U | U | U | U | | Benzo (g,h,i) perylene Total Aromatics | 0.000
U | 0.000
U | 0.000
U | 0.000 | | % Surrogate Recovery | | | | | |----------------------|---|----|----|-------------| | Phenanthrene d-10 | 0 | 73 | 76 | 77 | | | | | | | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | riojectivanie. | St. Croix Spiii | | | | | | | | |------------------------|-----------------|----------|------------|-------------|----------|------------|-----------|-----------| | Client ID | 352384 | 7-001 PS | Laboratory | Water Blank | 198 CLIF | TON HILL-A | 250 CLIFT | ON HILL-A | | RCAT ID | 2010 | 355-50 | MBW | 10358A | 2010 | 356-01 | 2010 | 356-03 | | Sample Matrix | w | ater | W | ater | w | ater | W | ater | | Analytical Instrument | Mu | stang | Mus | stang | Mu | stang | Mus | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 10 | 049 | 10 | 000 | 10 | 050 | 10 | 050 | | Sample Unit-Basis | i | ml | г | ml | 1 | ml | r | nl | | Units | и | g/L | uį | g/L | u | g/L | սլ | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.953 | 0.017 | 1.000 | 0.016 | 0.952 | 0.016 | 0.952 | | nC-11 Undecane | 0.012 | 0.952 | 0.013 | 1.000 | 0.012 | 0.952 | 0.012 | 0.952 | | nC-12 Dodecane | 0.014 | 0.952 | 0.015 | 1.000 | 0.014 | 0.952 | 0.014 | 0.952 | | nC-13 Tridecane | 0.011 | 0.952 | 0.011 | 1.000 | 0.011 | 0.952 | 0.011 | 0.952 | | nC-14 Tetradecane | 0.026 | 0.952 | 0.027 | 1.000 | 0.026 | 0.952 | 0.026 | 0.952 | | nC-15 Pentadecane | 0.023 | 0.952 | 0.024 | 1.000 | 0.023 | 0.952 | 0.023 | 0.952 | | nC-16 Hexadecane | 0.021 | 0.952 | 0.022 | 1.000 | 0.021 | 0.952 | 0.021 | 0.952 | | nC-17 Heptadecane | 0.046 | 0.952 | 0.048 | 1.000 | 0.046 | 0.952 | 0.046 | 0.952 | | Pristane | 0.044 | 0.952 | 0.046 | 1.000 | 0.044 | 0.952 | 0.044 | 0.952 | | nC-18 Octadecane | 0.067 | 0.952 | 0.070 | 1.000 | 0.067 | 0.952 | 0.067 | 0.952 | | Phytane | 0.069 | 0.952 | 0.073 | 1.000 | 0.069 | 0.952 | 0.069 | 0.952 | | nC-19 Nonadecane | 0.038 | 0.952 | 0.039 | 1.000 | 0.038 | 0.952 | 0.038 | 0.952 | | nC-20 Eicosane | 0.039 | 0.952 | 0.041 | 1.000 | 0.039 | 0.952 | 0.039 | 0.952 | | nC-21 Heneicosane | 0.033 | 0.952 | 0.034 | 1.000 | 0.033 | 0.952 | 0.033 | 0.952 | | nC-22 Docosane | 0.066 | 0.952 | 0.070 | 1.000 | 0.066 | 0.952 | 0.066 | 0.952 | | nC-23 Tricosane | 0.037 | 0.952 | 0.039 | 1.000 | 0.037 | 0.952 | 0.037 | 0.952 | | C-24 Tetracosane | 0.059 | 0.952 | 0.062 | 1.000 | 0.059 | 0.952 | 0.059 | 0.952 | | C-25 Pentacosane | 0.186 | 0.952 | 0.195 | 1.000 | 0.186 | 0.952 | 0.186 | 0.952 | | C-26 Hexacosane | 0.157 | 0.952 | 0.165 | 1.000 | 0.157 | 0.952 | 0.157 | 0.952 | | C-27 Heptacosane | 0.124 | 0.952 | 0.130 | 1.000 | 0.124 | 0.952 | 0.124 | 0.952 | | C-28 Octacosane | 0.199 | 0.952 | 0.208 | 1.000 | 0.199 | 0.952 | 0.199 | 0.952 | | C-29 Nonacosane | 0.150 | 0.952 | 0.157 | 1.000 | 0.150 | 0.952 | 0.150 | 0.952 | | C-30 Triacontane | 0.083 | 0.952 | 0.087 | 1.000 | 0.083 | 0.952 | 0.083 | 0.952 | | C-31 Hentriacontane | 0.084 | 0.952 | 0.088 | 1.000 | 0.084 | 0.952 | 0.084 | 0.952 | | C-32 Dotriacontane | 0.048 | 0.952 | 0.051 | 1.000 | 0.048 | 0.952 | 0.048 | 0.952 | | C-33 Tritriacontane | 0.070 | 0.952 | 0.074 | 1.000 | 0.070 | 0.952 | 0.070 | 0.952 | | nC-34 Tetratriacontane | 0.069 | 0.952 | 0.073 | 1.000 | 0.069 | 0.952 | 0.069 | 0.952 | | nC-35 Pentatriacontane | 0.034 | 0.952 | 0.036 | 1.000 | 0.034 | 0.952 | 0.034 | 0.952 | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | rroject name. | St. Cloix Spili | | | | | | | | |--|-----------------|----------------|----------------|---------------|----------------|----------------|----------------------------|----------------| | Client ID | 35238 | 47-001 PS | Laboratory | / Water Blank | 198 CLIF | TON HILL-A | 250 CLIF | TON HILL-A | | RCAT ID | 2010 | 355-50 | MBW | 10358A | 2010 | 356-01 | 66-01 2010356- | | | Sample Matrix | W | 'ater | | ater at | | ater | | ater | | · | | | | | | | | | | Analytical Instrument | MIL | stang | Mu | stang | Mu | stang | | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 049 | 1 | 000 | 1 | 050 | 10 | 050 | | Sample Unit-Basis | | ml | | ml | | ml | | n! | | Units | | g/L | | g/L | | g/L | | '''
g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | | | Naphthalene | 0.214 | 4.766 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | RQL
5.000 | | C1-Naphthalenes | 0.214 | 4.766 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C2-Naphthalenes | 0.214 | 4.766 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C3-Naphthalenes | 0.214 | 4.766 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | | | C4-Naphthalenes | 0.214 | 4.766 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000
5.000 | | Fluorene | 0.490 | 4.766 | 0.514 | 5.000 | 0.514 | 5.000 | | | | C1-Fluorenes | 0.490 | 4.766 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514
0.514 | 5.000 | | C2-Fluorenes | 0.490 | 4.766 | 0.514 | 5.000 | 0.514 | | | 5.000 | | C3- Fluorenes | 0.490 | 4.766 | 0.514 | 5.000 | 0.514 | 5.000
5.000 | 0.514 | 5.000 | | Dibenzothiophene | 0.628 | 4.766 | 0.659 | 5.000 | 0.659 | | 0.514 | 5.000 | | C1-Dibenzothiophenes | 0.628 | 4.766 | 0.659 | 5.000 | | 5.000 | 0.659 | 5.000 | | C2-Dibenzothiophenes | 0.628 | 4.766 | 0.659 | 5.000 | 0.659
0.659 | 5.000
5.000 | 0.659 | 5.000 | | C3- Dibenzothiophenes | 0.628 | 4.766 | 0.659 | 5.000 | | | 0.659 | 5.000 | | Phenanthrene | 0.365 | 4.766 | 0.383 | 5.000 | 0.659
0.383 | 5.000 | 0.659 | 5.000 | | C1-Phenanthrenes | 0.365 | 4.766 | 0.383 | | | 5.000 | 0.383 | 5.000 | | C2-Phenanthrenes | 0.365 | 4.766 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C3-Phenanthrenes | 0.365 | 4.766 | | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C4-Phenanthrenes | 0.365 | 4.766 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | Anthracene | 0.379 | | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | Fluoranthene | 0.651 | 4.766
4.766 | 0.398 | 5.000 | 0.398 | 5.000 | 0.398 | 5.000 | | Pyrene | 0.771 | | 0.683 | 5.000 | 0.683 | 5.000 | 0.683 | 5.000 | | C1- Pyrenes | | 4.766 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C2- Pyrenes | 0.771 | 4.766 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C3- Pyrenes | 0.771 | 4.766 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C4- Pyrenes | 0.771 | 4.766 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | • | 0.771 | 4.766 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | Naphthobenzothiophene C-1 Naphthobenzothiophenes | 0.628 | 4.766 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-2 Naphthobenzothiophenes | 0.628 | 4.766 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-3 Naphthobenzothiophenes | 0.628
0.628 | 4.766
4.766 | 0.659
0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | Benzo (a) Anthracene | | | | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | Chrysene | 1.047 | 4.766 | 1.098 | 5.000 | 1.098 | 5.000 |
1.098 | 5.000 | | • | 1.047 | 4.766 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C1- Chrysenes
C2- Chrysenes | 1.047 | 4.766 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | • | 1.047 | 4.766 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C3- Chrysenes | 1.047 | 4.766 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C4- Chrysenes | 1.047 | 4.766 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | Benzo (b) Fluoranthene
Benzo (k) Fluoranthene | 0.716 | 4.766 | 0.751 | 5.000 | 0.751 | 5.000 | 0.751 | 5.000 | | * * | 0.673 | 4.766 | 0.706 | 5.000 | 0.706 | 5.000 | 0.706 | 5.000 | | Benzo (e) Pyrene | 0.962 | 4.766 | 1.009 | 5.000 | 1.009 | 5.000 | 1.009 | 5.000 | | Benzo (a) Pyrene | 0.804 | 4.766 | 0.843 | 5.000 | 0.843 | 5.000 | 0.843 | 5.000 | | Perylene | 0.256 | 4.766 | 0.268 | 5.000 | 0.268 | 5.000 | 0.268 | 5.000 | | Indeno (1,2,3 - cd) Pyrene | 1.868 | 4.766 | 1.960 | 5.000 | 1.960 | 5.000 | 1.960 | 5.000 | | Dibenzo (a,h) anthracene | 1.631 | 4.766 | 1.711 | 5.000 | 1.711 | 5.000 | 1.711 | 5.000 | | Benzo (g,h,i) perylene | 2.103 | 4.766 | 2.206 | 5.000 | 2.206 | 5.000 | 2.206 | 5.000 | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | roject Name: | St. Croix Spill | | | | |---|-------------------|--------------------|--------------------|--------------------| | Client ID | 57 CLIFTON HILL-A | 34H CLIFTON HILL-A | 309 CLIFTON HILL-A | 207 CLIFTON HILL-A | | RCAT ID | 2010356-05 | 2010356-07 | 2010356-09 | 2010356-11 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | 6 Lipid | | | | | | ample Size | 1050 | 1050 | 1050 | 1050 | | iample Unit-Basis | mi | ml | ml | ml | | Inits | ug/L | ug/L | ug/L | ug/L | | C-10 Decane | U | U | U | ţ | | C-11 Undecane | U | U | U | | | C-12 Dodecane | U | U | U | | | C-13 Tridecane | U | U | U | ĺ | | C-14 Tetradecane | U | U | U | (| | C-15 Pentadecane | U | U | U | · · | | C-16 Hexadecane | U | U | U | L | | C-17 Heptadecane | U | U | U | l | | ristane | U , | mar Uca | U U | AUCT | | C-18 Octadecane | U. | V109 20.1 | 77J × | 0.1155 | | hytane | .) سحد (| 087J × 0.1 | 199 J J | 0.09b J | | C-19 Nonadecane | U | U | Ú | بر 0.0% T
بر | | C-20 Eicosane | U | U | U | ĺ | | 2-21 Heneicosane | U | U | U | L | | C-22 Docosane | U | Ú | U | L | | C-23 Tricosane | U | U | U | U | | C-24 Tetracosane | U | U | U | U | | 2-25 Pentacosane | U | U | U | U | | C-26 Hexacosane | U | U | U | U | | C-27 Heptacosane | U | U | U | U | | C-28 Octacosane | U | U | U | U | | C-29 Nonacosane | U | U | U | U | | C-30 Triacontane | U | U | U | U | | C-31 Hentriacontane | U | U | U | Ü | | C-32 Dotriacontane
C-33 Tritriacontane | U | U | U | U | | C-33 Tritriacontane C-34 Tetratriacontane | U | U | U | U | | C-34 Pentatriacontane | 0 | U | U | U | | Total Alkanes | 0.000 | 0. 960 | 0,800 | 0,600 | | , | C. 151 | | | | | | <i>U.</i> 101 | 0.176 | 0,211 | (/ 18 | 98 85 85 92 5 Alpha Androstane # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 57 CLIFTON HILL-A | 34H CLIFTON HILL-A | 309 CLIFTON HILL-A | 207 CLIFTON HILL-A | |----------------------------|-------------------|--------------------|--------------------|--------------------| | RCAT ID | 2010356-05 | 2010356-07 | 2010356-09 | 2010356-11 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | | | | | | | % Lipid | 0 | 0 | 0 | 0 | | Sample Size | 1050 | 1050 | 1050 | 1050 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | A | | | | | | Naphthalene | U | Ü | U | U | | C1-Naphthalenes | Ü | Ü | U | U | | C2-Naphthalenes | Ü | U | U | U | | C3-Naphthalenes | Ü | U | U | U | | C4-Naphthalenes | U | U | U | U | | Fluorene | U | U | U | U | | C1-Fluorenes | U | U | U | U | | C2-Fluorenes | U | U | U | U | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene | U | U | U | U | | C1-Dibenzothiophenes | U | U | U | U | | C2-Dibenzothiophenes | U | U | U | U | | C3- Dibenzothiophenes | U | U | U | U | | Phenanthrene | U | U | U | U | | C1-Phenanthrenes | U | U | U | U | | C2-Phenanthrenes | U | U | U | U | | C3-Phenanthrenes | U | U | U | U | | C4-Phenanthrenes | U | U | U | Ū | | Anthracene | U | U | U | U | | Fluoranthene | U | U | U | U | | Pyrene | U | U | U | Ū | | C1- Pyrenes | U | U | Ū | Ū | | C2- Pyrenes | U | Ū | Ū | Ū | | C3- Pyrenes | Ū | Ū | Ü | Ü | | C4- Pyrenes | Ū | Ū | Ū | Ü | | Naphthobenzothiophene | Ū | Ū | Ü | Ü | | C-1 Naphthobenzothiophenes | Ū | Ü | Ü | Ü | | C-2 Naphthobenzothiophenes | Ü | Ü | Ü | Ü | | C-3 Naphthobenzothiophenes | Ü | Ü | Ü | Ü | | Benzo (a) Anthracene | Ü | Ü | Ü | Ü | | Chrysene | Ü | Ü | Ü | Ü | | C1- Chrysenes | Ü | Ü | ŭ | Ü | | C2- Chrysenes | Ü | ŭ | ŭ | Ü | | C3- Chrysenes | Ü | ű | Ü | U | | C4- Chrysenes | Ü | ŭ | U | U | | Benzo (b) Fluoranthene | Ü | Ü | U | | | Benzo (k) Fluoranthene | U
U | U | U | U | | | U | | | U | | Benzo (e) Pyrene | | U | U | U | | Benzo (a) Pyrene | U | U | U | U | | Perylene | U | U | U | U | | Indeno (1,2,3 - cd) Pyrene | U | U | U | Ü | | Dibenzo (a,h) anthracene | U | U | U | U | | Benzo (g,h,i) perylene | 0.000 | 0.000 | 0.000 | U | | Total Aromatics | 0.000 | 0.000 | 0.000 | 0.000 | | % Surrogate Recovery | | | | | |----------------------|----|----|----|----| | Phenanthrene d-10 | 77 | 74 | 79 | 92 | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | | set of our opin | | | | | | | | |------------------------|-----------------|-----------|-----------|------------|----------|------------|-----------|------------| | Client ID | 57 CLIFT | ON HILL-A | 34H CLIFT | TON HILL-A | 309 CLIF | TON HILL-A | 207 CLIFT | TON HILL-A | | RCAT ID | 2010 | 356-05 | 2010. | 356-07 | 2010 | 356-09 | 2010 | 356-11 | | Sample Matrix | w | ater | W | ater | W | ater | W | ater | | Analytical Instrument | Mu | stang | Mu | stang | Mu | stang | Mus | stang | | % Moisture | | 0 | | 0 | | 0 | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 10 | 050 | 10 | 050 | 10 | 050 | 10 | 050 | | Sample Unit-Basis | ı | ml | r | ml | r | ml | r | nl | | Units | u | g/L | uį | g/L | u | g/L | uį | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.952 | 0.016 | 0.952 | 0.016 | 0.952 | 0.016 | 0.952 | | nC-11 Undecane | 0.012 | 0.952 | 0.012 | 0.952 | 0.012 | 0.952 | 0.012 | 0.952 | | nC-12 Dodecane | 0.014 | 0.952 | 0.014 | 0.952 | 0.014 | 0.952 | 0.014 | 0.952 | | nC-13 Tridecane | 0.011 | 0.952 | 0.011 | 0.952 | 0.011 | 0.952 | 0.011 | 0.952 | | nC-14 Tetradecane | 0.026 | 0.952 | 0.026 | 0.952 | 0.026 | 0.952 | 0.026 | 0.952 | | nC-15 Pentadecane | 0.023 | 0.952 | 0.023 | 0.952 | 0.023 | 0.952 | 0.023 | 0.952 | | nC-16 Hexadecane | 0.021 | 0.952 | 0.021 | 0.952 | 0.021 | 0.952 | 0.021 | 0.952 | | nC-17 Heptadecane | 0.046 | 0.952 | 0.046 | 0.952 | 0.046 | 0.952 | 0.046 | 0.952 | | Pristane | 0.044 | 0.952 | 0.044 | 0.952 | 0.044 | 0.952 | 0.044 | 0.952 | | nC-18 Octadecane | 0.067 | 0.952 | 0.067 | 0.952 | 0.067 | 0.952 | 0.067 | 0.952 | | Phytane | 0.069 | 0.952 | 0.069 | 0.952 | 0.069 | 0.952 | 0.069 | 0.952 | | nC-19 Nonadecane | 0.038 | 0.952 | 0.038 | 0.952 | 0.038 | 0.952 | 0.038 | 0.952 | | nC-20 Eicosane | 0.039 | 0.952 | 0.039 | 0.952 | 0.039 | 0.952 | 0.039 | 0.952 | | nC-21 Heneicosane | 0.033 | 0.952 | 0.033 | 0.952 | 0.033 | 0.952 | 0.033 | 0.952 | | nC-22 Docosane | 0.066 | 0.952 | 0.066 | 0.952 | 0.066 | 0.952 | 0.066 | 0.952 | | nC-23 Tricosane | 0.037 | 0.952 | 0.037 | 0.952 | 0.037 | 0.952 | 0.037 | 0.952 | | nC-24 Tetracosane | 0.059 | 0.952 | 0.059 | 0.952 | 0.059 | 0.952 | 0.059 | 0.952 | | nC-25 Pentacosane | 0.186 | 0.952 | 0.186 | 0.952 | 0.186 | 0.952 | 0.186 | 0.952 | | nC-26 Hexacosane | 0.157 | 0.952 | 0.157 | 0.952 | 0.157 | 0.952 | 0.157 | 0.952 | | nC-27 Heptacosane | 0.124 | 0.952 | 0.124 | 0.952 | 0.124 | 0.952 | 0.124 | 0.952 | | nC-28 Octacosane | 0.199 | 0.952 | 0.199 | 0.952 | 0.199 | 0.952 | 0.199 | 0.952 | | nC-29 Nonacosane | 0.150 | 0.952 | 0.150 | 0.952 | 0.150 | 0.952 | 0.150 | 0.952 | | nC-30 Triacontane | 0.083 | 0.952 | 0.083 | 0.952 | 0.083 | 0.952 | 0.083 | 0.952 | | nC-31 Hentriacontane | 0.084 | 0.952 | 0.084 | 0.952 | 0.084 | 0.952 | 0.084 | 0.952 | | nC-32 Dotriacontane | 0.048 | 0.952 | 0.048 | 0.952 | 0.048 | 0.952 | 0.048 | 0.952 | | nC-33 Tritriacontane | 0.070 | 0.952 | 0.070 | 0.952 | 0.070 | 0.952 | 0.070 | 0.952 | | nC-34 Tetratriacontane | 0.069 | 0.952 | 0.069 | 0.952 | 0.069 | 0.952 | 0.069 | 0.952 | | nC-35 Pentatriacontane | 0.034 | 0.952 | 0.034 | 0.952 | 0.034 | 0.952 | 0.034 | 0.952 | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 57 CLIFT | ON HILL-A | 34H CLIF | TON HILL-A | 309 CLIF | TON HILL-A | 207 CLIF | TON HILL-A | |--------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | RCAT ID | 2010 | 356-05 | 2010 | 356-07 | 2010 | 356-09 | 2010 | 356-11 | | Sample Matrix | w | ater | w | ater | w | ater | | ater | | Analytical Instrument | | stang | | stang | | stang | | stang | | % Moisture | 1710 | 0 | IVIG | 0 | Wid | 0 | | - | | | | | | - | | | | 0 | | % Lipid | | 0 | | 0 | | 0 | | 0 | | Sample Size | 1 | 050 | 1 | 050 | 1 | 050 | 10 | 050 | | Sample Unit-Basis | 1 | ml | 1 | ml | 1 | ml | ı | ni | | Units | n | g/L | n | g/L | n | g/L | n | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | Naphthalene | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C1-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C2-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 |
0.225 | 5.000 | | C3-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | C4-Naphthalenes | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | 0.225 | 5.000 | | Fluorene
C1-Fluorenes | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | C2-Fluorenes
C3- Fluorenes | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | Dibenzothiophene | 0.514
0.659 | 5.000
5.000 | 0.514 | 5.000 | 0.514 | 5.000 | 0.514 | 5.000 | | C1-Dibenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C2-Dibenzothiophenes | 0.659 | 5.000 | 0.659
0.659 | 5.000
5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C3- Dibenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659
0.659 | 5.000 | 0.659 | 5.000 | | Phenanthrene | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000
5.000 | 0.659
0.383 | 5.000 | | C1-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000
5.000 | | C2-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C3-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | C4-Phenanthrenes | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | 0.383 | 5.000 | | Anthracene | 0.398 | 5.000 | 0.398 | 5.000 | 0.398 | 5.000 | 0.398 | 5.000 | | Fluoranthene | 0.683 | 5.000 | 0.683 | 5.000 | 0.683 | 5.000 | 0.683 | 5.000 | | Pyrene | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C1- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C2- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C3- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | C4- Pyrenes | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | 0.809 | 5.000 | | Naphthobenzothiophene | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-1 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-2 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | C-3 Naphthobenzothiophenes | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | 0.659 | 5.000 | | Benzo (a) Anthracene | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | Chrysene | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C1- Chrysenes | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C2- Chrysenes
C3- Chrysenes | 1.098
1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | C4- Chrysenes | | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | 1.098 | 5.000 | | Benzo (b) Fluoranthene | 1.098
0.751 | 5.000
5.000 | 1.098
0.751 | 5.000
5.000 | 1.098
0.751 | 5.000 | 1.098 | 5.000 | | Benzo (k) Fluoranthene | 0.706 | 5.000 | 0.706 | 5.000 | 0.751
0.706 | 5.000 | 0.751 | 5.000 | | Benzo (e) Pyrene | 1.009 | 5.000 | 1.009 | 5.000 | 1.009 | 5.000
5.000 | 0.706
1.009 | 5.000
5.000 | | Benzo (a) Pyrene | 0.843 | 5.000 | 0.843 | 5.000 | 0.843 | 5.000 | 0.843 | 5.000 | | Perviene | 0.268 | 5.000 | 0.268 | 5.000 | 0.268 | 5.000 | 0.843 | 5.000 | | Indeno (1,2,3 - cd) Pyrene | 1.960 | 5.000 | 1.960 | 5.000 | 1.960 | 5.000 | 1.960 | 5.000 | | Dibenzo (a,h) anthracene | 1.711 | 5.000 | 1.711 | 5.000 | 1.711 | 5.000 | 1.711 | 5.000 | | Benzo (g,h,i) perylene | 2.206 | 5.000 | 2.206 | 5.000 | 2.206 | 5.000 | 2.206 | 5.000 | | | | • | | | | 0.000 | 2.200 | 0.000 | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 86 CLIFTON HILL-A | 66 CLIFTON HILL-A | 75A CLIFTON HILL-A | 194A CLIFTON HILL-A | | |------------------------|-------------------|-------------------|--------------------|---------------------|--| | RCAT ID | 2010356-13 | 2010356-15 | 2010356-17 | 2010356-19 | | | Sample Matrix | Water | Water | Water | Water | | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | | % Moisture | 0 | 0 | 0 | 0 | | | % Lipid | | | | | | | Sample Size | 1050 | 1050 | 1050 | 1050 | | | Sample Unit-Basis | ml | ml | ml | ml | | | Units | ug/L | ug/L | ug/L | ug/L | | | nC-10 Decane | U | U | U | U | | | nC-11 Undecane | Ü | U | υ
U | U | | | nC-12 Dodecane | U | U | Ū | Ü | | | nC-13 Tridecane | U | Ü | Ū | Ü | | | nC-14 Tetradecane | U | Ü | Ū | U | | | nC-15 Pentadecane | U | U | Ū | U | | | nC-16 Hexadecane | 0.076 J | 0.036 J | 0.095 J | 0.132 J | | | nC-17 Heptadecane | 0.258 J | 0.208 J | 0.250 J | 0.444 J | | | Pristane | 0.199 J | 0.200 J | 0.261 J | 0.227 J | | | nC-18 Octadecane | 0.154 J | 0.147 J | 0.113 J | 0.089 J | | | Phytane | 0.096 J | 0.100 J | 0.114 J | 0.118 J | | | nC-19 Nonadecane | U | 0.051 J | 0.041 J | U | | | nC-20 Eicosane | U | U | U | U | | | nC-21 Heneicosane | U | U | U | U | | | nC-22 Docosane | υ | U | U | U | | | nC-23 Tricosane | U | U | U | U | | | nC-24 Tetracosane | U | U | U | U | | | nC-25 Pentacosane | U | U | U | U | | | nC-26 Hexacosane | U | U | U | U | | | nC-27 Heptacosane | U | U | υ | U | | | nC-28 Octacosane | U | υ | U | U | | | nC-29 Nonacosane | U | U | U | U | | | nC-30 Triacontane | U | U | U | U | | | nC-31 Hentriacontane | 0.158 J | U | U | U | | | nC-32 Dotriacontane | 0.089 J | U | U | U | | | nC-33 Tritriacontane | 0,105 J | U | U | U | | | nC-34 Tetratriacontane | U | U | U | U | | | nC-35 Pentatriacontane | U | U | U | U | | | Total Alkanes | 1.13 | 0.742 | 0.873 | 1.01 | | | Surrogate Recovery (%) | | | | | |------------------------|----|----|----|----| | 5 Alpha Androstane | 79 | 80 | 76 | 75 | | | | | | | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Client ID | 86 CLIFTON HILL-A | 66 CLIFTON HILL-A | 75A CLIFTON HILL-A | 194A CLIFTON HILL-A | |----------------------------|-------------------|-------------------|--------------------|---------------------| | RCAT ID | 2010356-13 | 2010356-15 | 2010356-17 | 2010356-19 | | Sample Matrix | Water | Water | Water | Water | | Analytical Instrument | Mustang | Mustang | Mustang | Mustang | | % Moisture | 0 | 0 | 0 | 0 | | % Lipid | 0.000 | 0 | 0 | | | · | | | | 0 | | Sample Size | 1050 | 1050 | 1050 | 1050 | | Sample Unit-Basis | ml | ml | ml | ml | | Units | ng/L | ng/L | ng/L | ng/L | | Manhthalana | | | | | | Naphthalene | U
U | U | Ų | U | | C1-Naphthalenes | | U | Ü | U | | C2-Naphthalenes | U | U | Ü | U | | C3-Naphthalenes | U | U | U | U | | C4-Naphthalenes | U | U | U | U | | Fluorene | U | U | U | U | | C1-Fluorenes | U | U | U | U | | C2-Fluorenes | U | U | U | U | | C3- Fluorenes | U | U | U | U | | Dibenzothiophene | U | U | U | U | | C1-Dibenzothiophenes | U | U | U | U | | C2-Dibenzothiophenes | U | U | U | U | | C3- Dibenzothiophenes | U | U | U | U | | Phenanthrene | U | U | U | U | | C1-Phenanthrenes | U | U | U | 0.616 J | | C2-Phenanthrenes | U | U | U | U | | C3-Phenanthrenes | U | U | U | U | | C4-Phenanthrenes | U | U | U | U | | Anthracene | U | Ŭ | U | υ | | Fluoranthene | U | U | U | U | | Pyrene | U | U | U | U | | C1- Pyrenes | U | U | U | U | | C2- Pyrenes | U | Ŭ | U | U | | C3- Pyrenes | U | U | U | U | | C4- Pyrenes | U | U | U | Ü | | Naphthobenzothiophene | U | U | U | Ū | | C-1 Naphthobenzothiophenes | U | U | U | Ū | | C-2 Naphthobenzothiophenes | U | U | U | Ū | | C-3 Naphthobenzothiophenes | U | U | U | Ũ | | Benzo (a) Anthracene | U | U | Ü | Ū | | Chrysene | U | U | Ŭ | Ū | | C1- Chrysenes | U | U | Ū | Ü | | C2- Chrysenes | U | Ū | Ū | Ü | | C3- Chrysenes | U | Ü | Ū | Ü | | C4- Chrysenes | Ū | Ū | Ū | Ü | | Benzo (b) Fluoranthene | U | Ū | Ū | Ü | | Benzo (k) Fluoranthene | Ū | Ü | Ü | Ü | | Benzo (e) Pyrene | Ū | Ü | Ü | Ü | | Benzo (a) Pyrene | Ü | υ | ŭ | Ü | | Perylene | Ü | Ü | ŭ | U | | Indeno (1,2,3 - cd) Pyrene | Ü | ŭ | ŭ | U | | Dibenzo (a,h) anthracene | Ü | Ü | Ŭ | U | | Benzo (g,h,i) perylene | Ü | Ü | Ü | U | | Total Aromatics | 0.000 | 0.000 | 0.000 | 0.616 | | % \$urrogate Recovery | | | | | |-----------------------|----|----|----|----| | Phenanthrene d-10 | 75 | 75 | 73 | 74 | #### Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team Project Client: Hovensa Project Name: St. Croix Spill | Client ID | 86 CLIFTO | ON HILL-A | 66 CLIFT | ON HILL-A | 75A CLIFT | ON HILL-A | 194A CLIF | TON HILL-A | |------------------------|-----------|-------------|----------|-----------|-----------|-----------|-----------|------------| | RCAT ID | 20103 | 356-13 | 2010 | 356-15 | 2010 | 356-17 | 2010 | 356-19 | | Sample Matrix | Wa | iter | w | ater | W: | ater | W | ater | | Analytical Instrument | Mus | tang | Mu: | stang | Mus | stang | Mus | stang | | % Moisture | (| o | | 0 | | 0 | | 0 | | % Lipid | (|) | | 0 | | 0 | | 0 | | Sample Size | 10 | 50 | 10 | 050 | 10 | 050 | 10 | 050 | | Sample Unit-Basis | n | nl | r | ml | г | nl | r | nl | | Units | ug | <u>s</u> /L | uį | g/L | uį | g/L | uş | z/L | | | MDL | RQL | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.016 | 0.952 | 0.016 | 0.952 | 0.016 | 0.952 | 0.016 | 0.952 | | nC-11 Undecane | (0.125) | 9.804 | 0.012 | 0.952 | 0.012 | 0.952 | 0.012 | 0.952 | | nC-12 Dodecane | 0.144 | 9.804 | 0.014 | 0.952 | 0.014 | 0.952 | 0.014 | 0.952 | | nC-13 Tridecane | 0.111 | 9.804 | 0.011 | 0.952 | 0.011 | 0.952 | 0.011 | 0.952 | | nC-14 Tetradecane | 0.267 | 9.804 | 0.026 | 0.952 | 0.026 | 0.952 | 0.026 | 0.952 | | nC-15 Pentadecane | 0.235 | 9.804 | 0.023 | 0.952 | 0.023 | 0.952 | 0.023 | 0.952 | | nC-16 Hexadecane | 0.220 | 9.804 | 0.021 | 0.952 | 0.021 | 0.952 | 0.021 | 0.952 | | nC-17 Heptadecane | 0.470 | 9.804 | 0.046 | 0.952 | 0.046 | 0.952 | 0.046 | 0.952 | | Pristane | 0.455 | 9.804 | 0.044 | 0.952 | 0.044 | 0.952 | 0.044 | 0.952 | | nC-18 Octadecane | 0.691 | 9.804 | 0.067 | 0.952 | 0.067 | 0.952 | 0.067 | 0.952 | | Phytane | 0.711 | 9.804 | 0.069 | 0.952 | 0.069 | 0.952 | 0.069 | 0.952 | | nC-19 Nonadecane | 0.386 | 9.804 | 0.038 | 0.952 | 0.038 | 0.952 | 0.038 |
0.952 | | nC-20 Eicosane | 0.406 | 9.804 | 0.039 | 0.952 | 0.039 | 0.952 | 0.039 | 0.952 | | nC-21 Heneicosane | 0.337 | 9.804 | 0.033 | 0.952 | 0.033 | 0.952 | 0.033 | 0.952 | | nC-22 Docosane | 0.682 | 9.804 | 0.066 | 0.952 | 0.066 | 0.952 | 0.066 | 0.952 | | nC-23 Tricosane | 0.381 | 9.804 | 0.037 | 0.952 | 0.037 | 0.952 | 0.037 | 0.952 | | nC-24 Tetracosane | 0.603 | 9.804 | 0.059 | 0.952 | 0.059 | 0.952 | 0.059 | 0.952 | | nC-25 Pentacosane | 1.910 | 9.804 | 0.186 | 0.952 | 0.186 | 0.952 | 0.186 | 0.952 | | nC-26 Hexacosane | 1.616 | 9.804 | 0.157 | 0.952 | 0.157 | 0.952 | 0.157 | 0.952 | | nC-27 Heptacosane | 1.277 | 9.804 | 0.124 | 0.952 | 0.124 | 0.952 | 0.124 | 0.952 | | nC-28 Octacosane | 2.044 | 9.804 | 0.199 | 0.952 | 0.199 | 0.952 | 0.199 | 0.952 | | nC-29 Nonacosane | 1.539 | 9.804 | 0.150 | 0.952 | 0.150 | 0.952 | 0.150 | 0.952 | | nC-30 Triacontane | 0.851 | 9.804 | 0.083 | 0.952 | 0.083 | 0.952 | 0.083 | 0.952 | | nC-31 Hentriacontane | 0.865 | 9.804 | 0.084 | 0.952 | 0.084 | 0.952 | 0.084 | 0.952 | | nC-32 Dotriacontane | 0.495 | 9.804 | 0.048 | 0.952 | 0.048 | 0.952 | 0.048 | 0.952 | | nC-33 Tritriacontane | 0.725 | 9.804 | 0.070 | 0.952 | 0.070 | 0.952 | 0.070 | 0.952 | | nC-34 Tetratriacontane | 0.711 | 9.804 | 0.069 | 0.952 | 0.069 | 0.952 | 0.069 | 0.952 | | nC-35 Pentatriacontane | 0.351 | 9.804 | 0.034 | 0.952 | 0.034 | 0.952 | 0.034 | 0.952 | | | | | | | | | | | Allhots 10X delation # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | RCAT ID 2010356-13 2010356-15 2010356-17 2010356-19 2010 | | | | | | | | | | |--|---------------------------|----------|-----------|----------|-----------|-----------|-----------|-----------|-------------| | Sample Matrix Water Water Water Water Mustang Mustang Analytical Instrument Analytical Instrument Mustang 0 | Client ID | 86 CLIFT | ON HILL-A | 66 CLIFT | ON HILL-A | 75A CLIFT | ON HILL-A | 194A CLIF | TON HILL-A | | Analytical instrument Analytical instrument Mustang Mus | RCAT ID | 2010 | 356-13 | 2010 | 356-15 | 20103 | 356-17 | 2010 | 356-19 | | Analytical instrument Analytical instrument Mustang Mus | Sample Matrix | W | ater | w: | ater | Wa | ater | Wa | ater | | % Moisture 0 <th< td=""><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<> | · | | | | | | | | | | % ipid 0 0 0 0 0 0 Sample Sire 1050 1050 1050 1050 1050 Sample Sire msl <t< td=""><td>·</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>•</td></t<> | · | | | | - | | | | • | | Sample Size 1050 | % Moisture | | 0 | | 0 | 1 | 0 | | D | | Montage | % Lipid | | 0 | | 0 | ; | 0 | | 0 | | Sample Unit-Basis m/L | Sample Size | 10 | 050 | 10 | 050 | 10 |)50 | 10 | 50 | | Naphthalene | Sample Unit-Basis | ı | ml | r | ni | r | ni | r | nl | | Mpt | ' | | | | | | | n | 9 /I | | Naphthalene | Onis | | | | | | | | | | Ci-Naphthalenes 0.214 4.762 0.214
4.762 0.214 4.762 0. | Nanhthalene | | | | | | | | | | C2-Naphthalenes 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.490 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 | | | | | | | | | | | C3-Haphthalenes 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.214 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.490 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 | | | | | | | | | | | C4-Haphthalienes 0 214 4 762 0 214 4 762 0 214 4 762 0 490 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 4 762 0 627 | • | | | | | | | | | | Fluoreine | • | | | | | | | | 4.762 | | C1-Fluorenes 0,490 4,762 0,490 4,762 0,490 4,762 0,490 4,762 0,490 4,762 0,490 4,762 C2-Fluorenes 0,490 4,762 0,490 4,762 0,490 4,762 0,490 4,762 C3-Fluorenes 0,690 4,762 0,690 4,762 0,697 4,762 0,627 4,762 0,771 4,762 0,7 | | | | | | | | | | | C2-Fluorenes 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.390 4.762 0.390 4.762 0.390 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.490 4.762 0.627 4.762 0.365 4.762 0.379 | | | | | | | | 0.490 | | | C3- Fluorenes 0,490 4,762 0,490 4,762 0,490 4,762 0,490 4,762 0,490 4,762 0,490 4,762 0,527 4,762 0,525 4,762 0,527 4,762 0,52 | | | | | | 0.490 | 4.762 | 0.490 | 4.762 | | Dibbracthiophenes | | | | | | 0.490 | 4.762 | 0.490 | 4.762 | | C1-Dibenzothiophenes 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.365 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.762</td> | | | | | | | | | 4.762 | | C2-Dibenzothiophenes 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.627 4,762 0.365 </td <td></td> <td></td> <td></td> <td></td> <td>4.762</td> <td>0.627</td> <td>4.762</td> <td>0.627</td> <td>4.762</td> | | | | | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | C3-Dibenzothiophenes 0.627 4.762 0.627 4.762 0.627 4.762 0.365 4.762 0.365
4.762 0.365 4.762 0.379 </td <td></td> <td></td> <td></td> <td></td> <td>4.762</td> <td>0.627</td> <td>4.762</td> <td>0.627</td> <td>4.762</td> | | | | | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | Phenanthrene 0.365 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.371 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 | | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | C2-Phenanthrenes 0.365 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.371 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 | • | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | C2-Phenanthrenes 0.365 4.762 0.379 4.762 0.371 4.762 0.771 4.762 0.371 4.762 0 | C1-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | C4-Phenanthrenes 0.365 4.762 0.365 4.762 0.365 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.365 4.762 0.365 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.627 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 | | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | Anthracene 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.379 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.650 4.762 0.771 4.762 0.627 4.762 0 | C3-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | Fluoranthene 0.650 4.762 0.650 4.762 0.650 4.762 0.771 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 | C4-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | Pyrene 0.771 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 <t< td=""><td>Anthracene</td><td>0.379</td><td>4.762</td><td>0.379</td><td>4.762</td><td>0.379</td><td>4.762</td><td>0.379</td><td>4.762</td></t<> | Anthracene | 0.379 | 4.762 | 0.379 | 4.762 | 0.379 | 4.762 | 0.379 | 4.762 | | C1- Pyrenes 0.771 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 | Fluoranthene | 0.650 | 4.762 | 0.650 | 4.762 | 0.650 | 4.762 | 0.650 | 4.762 | | C2- Pyrenes 0.771 4.762 0.627 4.762 0.627 | Pyrene Pyrene | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | | C3- Pyrenes 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.627 | C1- Pyrenes | 0.771 | 4.762 | | | | 4.762 | | | | C4- Pyrenes 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.771 4.762 0.627 | C2- Pyrenes | | | | | | | | | |
Naphthobenzothiophene 0.627 4.762 0.046 4.762 0.046< | C3- Pyrenes | | | | | | | | | | C-1 Naphthobenzothiophenes 0.627 4.762 0.627 0.627 4.762 0.627 0.6 | | | | | | | | | | | C-2 Naphthobenzothiophenes 0.627 4.762 0.625 4.762 0.6 | | | | | | | , | | | | C-3 Naphthobenzothiophenes 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 4.762 0.627 0.6 | · | | | | | | | | | | Benzo (a) Anthracene 1.046 4.762 1.046 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | | Chrysene 1.046 4.762 1.046 | | | | | | | | | | | C1- Chrysenes 1.046 4.762 1.046 | * * | | | | | | | | | | C2- Chrysenes 1.046 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.961 4.762 0.672 | | | | | | | | | | | C3- Chrysenes 1.046 4.762 1.046 1.046 4.762 1.046
1.046 1.04 | * | | | | | | | | | | C4- Chrysenes 1.046 4.762 1.046 4.762 1.046 4.762 1.046 4.762 Benzo (b) Fluoranthene 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 Benzo (k) Fluoranthene 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 Benzo (e) Pyrene 0.961 4.762 0.961 4.762 0.961 4.762 0.961 4.762 Benzo (a) Pyrene 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 Perylene 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.866 4.762 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.629 4.762 1.629 4.762 1.629 4.762 1.629 4.762 | , | | | | | | | | | | Benzo (b) Fluoranthene 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.715 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.961 4.762 0.961 4.762 0.961 4.762 0.961 4.762 0.961 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 | • | | | | | | | | | | Benzo (k) Fluoranthene 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.672 4.762 0.961 4.762 0.961 4.762 0.961 4.762 0.961 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.803 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 | • | | | | | | | | | | Benzo (e) Pyrene 0.961 4.762 0.961 4.762 0.961 4.762 0.961 4.762 Benzo (a) Pyrene 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 Perylene 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.866 4.762 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.629 4.762 1.629 4.762 1.629 4.762 1.629 4.762 | . , | | | | | | | | | | Benzo (a) Pyrene 0.803 4.762 0.803 4.762 0.803 4.762 0.803 4.762 Perylene 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 Indeno (1,2,3 - cd) Pyrene 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.629 4.762 1.629 4.762 1.629 4.762 | | | | | | | | | | | Perylene 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 0.255 4.762 1.866 4.762 1.866 4.762 1.866 4.762 1.866 4.762 1.629 | | | | | | | | | | | Indeno (1,2,3 - cd) Pyrene 1.866 4.762 1.866 4.762 1.866 4.762 1.866 4.762 Dibenzo (a,h) anthracene 1.629 4.762 1.629 4.762 1.629 4.762 | | | | | | | | | | | Dibenzo (a,h) anthracene 1.629 4.762 1.629 4.762 1.629 4.762 1.629 4.762 | 2012 4.101 4.102 2.101 4.102 2.101 4.102 2.101 4.102 | | | | | | | | | | | | Source (girin) por yielle | 2.101 | 02 | 2.701 | 02 | | 02 | | 32 | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , | | | | |---|-------------|----------------------|----------------|--| | Client ID | D-8501 NO.2 | LCS | LCSD | | | RCAT ID | 2010356-21 | LCS2010358A | LCS2010358ADUP | | | Sample Matrix | Oil | Water | Water | | | Analytical Instrument | Mustang | Mustang | Mustang | | | % Moisture | 0 | 0 | 0 | | | % Lipid | | | | | | Sample Size | 510 | 1000 | 1000 | | | Sample Unit-Basis | mg | ml | mi | | | Units | ug/g | ug/L | ug/L | | | | | | | | | nC-10 Decane | 1790 | 2.06 | 2.35 | | | nC-11 Undecane | 212 | 2.30 | 2.65 | | | nC-12 Dodecane | 867 | 2.65 | 3.08 | | | nC-13 Tridecane | 386 | 2.62 | 3.14 | | | nC-14 Tetradecane | 137 | 2.64 | 3.19 | | | nC-15 Pentadecane | U | 2.83 | 2.78 | | | nC-16 Hexadecane | 3.39 J | 2.85 | 2.87 | | | nC-17 Heptadecane | 1.17 J | 2.66 | 2.66 | | | Pristane | U | 3.13 | 2.98 | | | nC-18 Octadecane | U | 2.86 | 2.71 | | | Phytane | 1.11 J | 2.97 | 2.84 | | | nC-19 Nonadecane | U | 2.98 | 2.75 | | | nC-20 Eicosane | U | 3.02 | 2.97 | | | nC-21 Heneicosane | U | 3.01 | 2.94 | | | nC-22 Docosane | U | 3.01 | 2.92 | | | nC-23 Tricosane | U | 3.01 | 2.92 | | | nC-24 Tetracosane | U | 2.97 | 2.86 | | | nC-25 Pentacosane | U | 2.69 | 2.69 | | | nC-26 Hexacosane | U | 2.64 | 2.62 | | | nC-27 Heptacosane | U | 2.55 | 2.52 | | | nC-28 Octacosane | U | 2.46 | 2.40 | | | nC-29 Nonacosane | U | 2.26 | 2.22 | | | nC-30 Triacontane | U | 3.28 | 3.13 | | | nC-31 Hentriacontane | U | 2.79 | 2.68 | | | nC-32 Dotriacontane | U | 2.34 | 2.16 | | | nC-33 Tritriacontane | U | 3.75 | 3.61 | | | nC-34 Tetratriacontane | U | 3.07 | 2.92 | | | nC-35 Pentatriacontane | U | 2.43 | 2.45 | | | Total Alkanes | 3400 | 7 7. 8 | 7 8.0 | | | Surrogate Recovery (%) | According Co. | | | | |------------------------|---------------|----|----|--| | 5 Alpha Androstane | 0 | 55 | 52 | | | | | | | | #### Louisiana State University **Department of Environmental Sciences** Response & Chemical Assessment Team | Project Client: | Hovensa | | | | |---------------------------------------|-----------------|--------------|----------------|--| | Project Name: | St. Croix Spill | | | | | Client ID | D-8501 NO.2 | LCS | LCSD | | | Client ID | 5 6361 NO.2 | 103 | icob | | | RCAT ID | 2010356-21 | LCS2010358A | LCS2010358ADUP | | | Sample Matrix | Oil | Water | Water | | | Analytical Instrument | Mustang | Mustang | Mustang | | | % Moisture | 0 | 0 | 0 | | | | | | | | | % Lipid | 0 | 0 | 0 | | | Sample Size | 510 | 1000 | 1000 | | | Sample Unit-Basis | mg | ml | ml | | | Units | ug/Kg | ng/L | ng/L | | | Naphthalene | 52100 | 1880 | 2070 | | | C1-Naphthalenes | 43900 | U | U | | | C2-Naphthalenes | 14000 | U | Ü | | | C3-Naphthalenes | U | U | U | | | C4-Naphthalenes | U | U | U | | | Fluorene | U | 2830 | 2680 | | | C1-Fluorenes | U | U | U | | | C2-Fluorenes | U | U | U | | | C3- Fluorenes | U | U | U | | | Dibenzothiophene | 1.05 J | 2740 | 2590 | | | C1-Dibenzothiophenes | 0.818 J | U | Ü | | | C2-Dibenzothiophenes | U | U | Ü | | | C3- Dibenzothiophenes
Phenanthrene | U
0.720 J | U | U | | | C1-Phenanthrenes | 0.720 J
U | 2440
U | 2300 | | | C2-Phenanthrenes | Ü | U
U | U
U | | | C3-Phenanthrenes | Ü | U | Ü | | | C4-Phenanthrenes | Ü | U | Ü | | | Anthracene | 0.496 J | 2800 | 2660 | | | Fluoranthene | U.450 V | 2490 | 2540 | | | Pyrene | Ü | 2530 | 2560 | | | C1- Pyrenes | ŭ | 1.08 J | 1.08 J | | | C2- Pyrenes | Ü | U | ν.σο σ | | | C3- Pyrenes | Ü | ŭ | Ü | | | C4- Pyrenes | Ū | Ü | Ü | | | Naphthobenzothiophene | U | Ū | Ū | | | C-1 Naphthobenzothiophenes | 0.655 J | U | U | | | C-2 Naphthobenzothiophenes | U | U | U | | | C-3 Naphthobenzothiophenes | U | U | U | | | Benzo (a) Anthracene | U | 2520 | 2510 | | | Chrysene | U | 2510 | 2530 | | | C1- Chrysenes | U | U | U | | | C2- Chrysenes | U | U | U | | | C3- Chrysenes | U | U | U | | | C4- Chrysenes | U | U | U | | | Benzo (b) Fluoranthene | U | 2310 | 2300 | | | Senzo (k) Fluoranthene | U | 2850 | 2820 | | | Benzo (e) Pyrene | U | 2260 | 2310 | | | Benzo (a) Pyrene
Perylene | U
U | 1460 | 1630 | | | ndeno (1,2,3 - cd) Pyrene | Ü | 2030
1390 | 2050
1390 | | | Dibenzo (a,h) anthracene | Ü | 1690 | 1390
1720 | | | Benzo (g,h,i) perylene | Ü | 1390 | 1500 | | | Total Aromatics | 110000 | 38100 | 38200 | | | % Surrogate Recovery | | | | | |----------------------|---|----|----|--| | Phenanthrene d-10 | 0 | 53 | 50 | | | | | | | | ## Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | |------------------------|-----------------|-------|-------------|-------|----------------|-------| | Client ID | D-8501 NO.2 | | LCS | | LCSD | | | RCAT ID | 2010356-21 | | LCS2010358A | | LCS2010358ADUP | | | Sample Matrix | Oil | | Water | | Water | | | Analytical Instrument | Mustang | | Mustang | | Mustang | | | % Moisture | 0 | | | 0 | | 0 | | % Lipid | 0 | | | 0 | | 0 | | Sample Size | 510 | | 1000 | | 1000 | | | Sample Unit-Basis | mg | | r | ml | | ni | | Units | ug/g | | ug/L | | u _{ | g/L | | | MDL | RQL | MDL | RQL | MDL | RQL | | nC-10 Decane | 0.166 | 9.804 | 0.017 | 1.000 | 0.017 | 1.000 | | nC-11 Undecane | 0.125 | 9.804 | 0.013 | 1.000 | 0.013 | 1.000 | | nC-12 Dodecane | 0.144 | 9.804 | 0.015 | 1.000 | 0.015 | 1.000 | | nC-13 Tridecane |
0.111 | 9.804 | 0.011 | 1.000 | 0.011 | 1.000 | | nC-14 Tetradecane | 0.267 | 9.804 | 0.027 | 1.000 | 0.027 | 1.000 | | nC-15 Pentadecane | 0.235 | 9.804 | 0.024 | 1.000 | 0.024 | 1.000 | | nC-16 Hexadecane | 0.220 | 9.804 | 0.022 | 1.000 | 0.022 | 1.000 | | nC-17 Heptadecane | 0.470 | 9.804 | 0.048 | 1.000 | 0.048 | 1.000 | | Pristane | 0.455 | 9.804 | 0.046 | 1.000 | 0.046 | 1.000 | | nC-18 Octadecane | 0.691 | 9.804 | 0.070 | 1.000 | 0.070 | 1.000 | | Phytane | 0.711 | 9.804 | 0.073 | 1.000 | 0.073 | 1.000 | | nC-19 Nonadecane | 0.386 | 9.804 | 0.039 | 1.000 | 0.039 | 1.000 | | nC-20 Eicosane | 0.406 | 9.804 | 0.041 | 1.000 | 0.041 | 1.000 | | nC-21 Heneicosane | 0.337 | 9.804 | 0.034 | 1.000 | 0.034 | 1.000 | | nC-22 Docosane | 0.682 | 9.804 | 0.070 | 1.000 | 0.070 | 1.000 | | nC-23 Tricosane | 0.381 | 9.804 | 0.039 | 1.000 | 0.039 | 1.000 | | nC-24 Tetracosane | 0.603 | 9.804 | 0.062 | 1.000 | 0.062 | 1.000 | | nC-25 Pentacosane | 1.910 | 9.804 | 0.195 | 1.000 | 0.195 | 1.000 | | nC-26 Hexacosane | 1.616 | 9.804 | 0.465 | 1.000 | 0.165 | 1.000 | | nC-27 Heptacosane | 1.277 | 9.804 | 0.130 | 1.000 | 0.130 | 1.000 | | nC-28 Octacosane | 2.044 | 9.804 | 0.208 | 1.000 | 0.208 | 1.000 | | nC-29 Nonacosane | 1.539 | 9.804 | 0.157 | 1.000 | 0.157 | 1.000 | | nC-30 Triacontane | 0.851 | 9.804 | 0.087 | 1.000 | 0.087 | 1.000 | | nC-31 Hentriacontane | 0.865 | 9.804 | 0.088 | 1.000 | 0.088 | 1.000 | | nC-32 Dotriacontane | 0.495 | 9.804 | 0.051 | 1.000 | 0.051 | 1.000 | | nC-33 Tritriacontane | 0.725 | 9.804 | 0.074 | 1.000 | 0.074 | 1.000 | | nC-34 Tetratriacontane | 0.711 | 9.804 | 0.073 | 1.000 | 0.073 | 1.000 | | nC-35 Pentatriacontane | 0.351 | 9.804 | 0.036 | 1.000 | 0.036 | 1.000 | | | | | | | | | # Louisiana State University Department of Environmental Sciences Response & Chemical Assessment Team | Project Name: | St. Croix Spill | | | | | | | |------------------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|------| | Client ID | D-8501 NO.2 | | LCS | | LCSD | | | | RCAT ID | 2010356-21 | | LCS20 | LCS2010358A | | 358ADUP | | | Sample Matrix | Oil | | w | Water | | ater | | | Analytical Instrument | Mustang | | Ma | stang | | stang | | | % Moisture | 0 | | | 0 | | 0 | | | | 0 | | | 0 | | | | | % Lipid | | | | | | 0 | | | Sample Size | 510 | | 10 | 000 | 10 | 000 | | | Sample Unit-Basis | mg | | 1 | ml | | nl | | | Units | ug/Kg | | ng/L | | | g/L | | | | MDL | RQL | MDL | RQL | MDL | RQL |
 | | Naphthalene | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | | C1-Naphthalenes | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | | C2-Naphthalenes | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | | C3-Naphthalenes
C4-Naphthalenes | 0.214 | 4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | | Fluorene | 0.214
0.490 | 4.762
4.762 | 0.214 | 4.762 | 0.214 | 4.762 | | | C1-Fluorenes | 0.490 | 4.762
4.762 | 0.490
0.490 | 4.762 | 0.490 | 4.762 | | | C2-Fluorenes | 0.490 | 4.762 | 0.490 | 4.762
4.762 | 0.490
0.490 | 4.762
4.762 | | | C3- Fluorenes | 0.490 | 4.762 | 0.490 | 4.762 | 0.490 | 4.762 | | | Dibenzothiophene | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | | C1-Dibenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | | C2-Dibenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | | C3- Dibenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | | Phenanthrene | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | | C1-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | | C2-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | | C3-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | | C4-Phenanthrenes | 0.365 | 4.762 | 0.365 | 4.762 | 0.365 | 4.762 | | | Anthracene | 0.379 | 4.762 | 0.379 | 4.762 | 0.379 | 4.762 | | | Fluoranthene | 0.650 | 4.762 | 0.650 | 4.762 | 0.650 | 4.762 | | | Pyrene | 0.771 | 4.762 | 0.771 | 4.762 | 0.771 | 4.762 | | | C1- Pyrenes
C2- Pyrenes | 0.771
0.771 | 4.762
4.762 | 0.771
0.771 | 4.762 | 0.771 | 4.762 | | | C3- Pyrenes | 0.771 | 4.762 | 0.771 | 4.762
4.762 | 0.771 | 4.762 | | | C4- Pyrenes | 0.771 | 4.762 | 0.771 | 4.762 | 0.771
0.771 | 4.762
4.762 | | | Naphthobenzothiophene | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | | C-1 Naphthobenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | | C-2 Naphthobenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4.762 | | | C-3 Naphthobenzothiophenes | 0.627 | 4.762 | 0.627 | 4.762 | 0.627 | 4,762 | | | Benzo (a) Anthracene | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | | Chrysen e | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | | C1- Chrysenes | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | | C2- Chrysenes | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | | C3- Chrysenes | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | | C4- Chrysenes | 1.046 | 4.762 | 1.046 | 4.762 | 1.046 | 4.762 | | | Benzo (b) Fluoranthene | 0.715 | 4.762 | 0.715 | 4.762 | 0.715 | 4.762 | | | Benzo (k) Fluoranthene | 0.672 | 4.762 | 0.672 | 4.762 | 0.672 | 4.762 | | | Benzo (e) Pyrene | 0.961 | 4.762 | 0.961 | 4.762 | 0.961 | 4.762 | | | Benzo (a) Pyrene
Perylene | 0.803
0.255 | 4.762
4.762 | 0.803 | 4.762 | 0.803 | 4.762 | | | Indeno (1,2,3 - cd) Pyrene | 0.∠55
1.866 | 4.762
4.762 | 0.255
1.866 | 4.762
4.762 | 0.255 | 4.762 | | | Dibenzo (a,h) anthracene | 1.629 | 4.762 | 1.629 | 4.762
4.762 | 1.866
1.629 | 4.762
4.762 | | | Benzo (g,h,i) perylene | 2.101 | 4.762 | 2.101 | 4.762 | 2.101 | 4.762
4.762 | | | (Simily Perfective | 2 | 7.7 02 | 2.101 | 4.702 | 2.101 | 7.702 | |